Designer binders protect silicon battery electrodes

October 20, 2017, US Department of Energy
Battery electrodes composed of silicon (Si) nanoparticles (gray with a shell of surface oxide in yellow) were more resilient to charge/discharge cycling with the addition of surface-binding citric acid (green) than with poly(vinylidene) fluoride (PVDF), a widely used binder in other lithium-ion batteries. During cycling (right), the citric acid reacted to form a protective layer (light blue), which suppressed the decomposition of the electrolyte. The resulting solid electrolyte interphase (dark blue) was thinner and more stable. Credit: Brett Lucht, University of Rhode Island

In your electric car's battery, swapping an electrode with one made of silicon could let the battery store 10 times more energy. Why isn't silicon used? It falls apart. Scientists designed binders, small molecules and polymers, to modify the surface chemistry of the silicon. The binders improved resilience to cycling. A binder-based layer was formed during electrode preparation and initial cycling. The binder layer protected the surface.

The research is developing a better understanding of modified silicon electrodes for . The result? The work could lead to batteries that give electric vehicles a greater driving range.

Lithium-ion batteries with silicon anodes have a theoretical capacity 10 times higher than the most commonly used anodes. However, suffer degradation during charging and discharging. The electrode contracts and expands during cycling, pulverizing active particles and destroying electrical contact. The volume changes break down and destroy the solid electrolyte interphase. A team led by researchers from the University of Rhode Island investigated reactive carboxylic acid functionalized polymers and as surface-modifying agents and binders for silicon anodes. Small molecules have the added benefit of high orientational flexibility for better surface coverage. All the functional binders modified the surface of the silicon nanoparticles.

During cycling, these binders electrochemically reacted and formed a protective layer, which suppressed the decomposition reactions with the electrolyte. The resulting solid electrolyte interphase was thinner than with the widely used binder poly(vinylidene) fluoride. Remarkably, after only one charge/discharge cycle, the small molecule, citric acid, reacted and formed a layer that protected the silicon from reacting with the electrolyte. Along with other binders, allowed for improved capacity retention and a more stable solid electrolyte interphase. The surface-modified has improved cycle life, making these materials more attractive for next-generation lithium-ion batteries and long-range electric vehicles.

Explore further: Organic/inorganic sulfur may be key for safe rechargeable lithium batteries

More information: Cao Cuong Nguyen et al. Systematic Investigation of Binders for Silicon Anodes: Interactions of Binder with Silicon Particles and Electrolytes and Effects of Binders on Solid Electrolyte Interphase Formation, ACS Applied Materials & Interfaces (2016). DOI: 10.1021/acsami.6b03357

Cao Cuong Nguyen et al. Improved Cycling Performance of a Si Nanoparticle Anode Utilizing Citric Acid as a Surface-Modifying Agent, Langmuir (2016). DOI: 10.1021/acs.langmuir.6b04310

Related Stories

Battery breakthrough using 2016 Nobel Prize molecule

July 21, 2017

Silicon anodes are receiving a great deal of attention from the battery community. They can deliver around three to five times higher capacity compared with those using current graphite anodes in lithium ion batteries. A ...

Recommended for you

A novel approach of improving battery performance

September 18, 2018

New technological developments by UNIST researchers promise to significantly boost the performance of lithium metal batteries in promising research for the next-generation of rechargeable batteries. The study also validates ...

Germany rolls out world's first hydrogen train

September 17, 2018

Germany on Monday rolled out the world's first hydrogen-powered train, signalling the start of a push to challenge the might of polluting diesel trains with costlier but more eco-friendly technology.

Technology streamlines computational science projects

September 15, 2018

Since designing and launching a specialized workflow management system in 2010, a research team from the US Department of Energy's Oak Ridge National Laboratory has continuously updated the technology to help computational ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.