Water, water, nowhere: Research indicates graphane could act as efficient and water-free hydrogen fuel cell membrane

May 4, 2017 by Paul Kovach, University of Pittsburgh
In computer simulations at Pitt, graphane provides a water-free "bucket brigade" to rapidly conduct protons across the membrane and electrons across the circuit. Credit: A. Bagusetty/University of Pittsburgh; Rick Henkel

Hydrogen powered fuel cell cars, developed by almost every major car manufacturer, are ideal zero-emissions vehicles because they produce only water as exhaust. However, their reliability is limited because the fuel cell relies upon a membrane that only functions in when enough water is present, limiting the vehicle's operating conditions.

Researchers at the University of Pittsburgh's Swanson School of Engineering have found that the unusual properties of graphane – a two-dimensional polymer of carbon and – could form a type of anhydrous "bucket brigade" that transports protons without the need for , potentially leading to the development of more efficient hydrogen cells for vehicles and other energy systems.

The principal investigator is Karl Johnson, the William Kepler Whiteford Professor in the Swanson School's Department of Chemical & Petroleum Engineering, and graduate research assistant Abhishek Bagusetty is the lead author. Their work, "Facile Anhydrous Proton Transport on Hydroxyl Functionalized Graphane", was published this week in Physical Review Letters. Computational modeling techniques coupled with the high performance computational infrastructure at the University's Center for Research Computing enabled them to design this potentially groundbreaking material.

Hydrogen fuels cells are like a battery that can be recharged with hydrogen and oxygen. The hydrogen enters one side of the fuel cell, where it is broken down into protons (hydrogen ions) and electrons, while oxygen enters the other side and is ultimately chemically combined with the protons and electrons to produce water, releasing a great deal of energy.

At the heart of the fuel cell is a exchange membrane (PEM). These membranes mostly rely on water to aid in the conduction of protons across the membranes. Everything works well unless the temperature gets too high or the humidity drops, which depletes the membrane of water and stops the protons from migrating across the membrane. Dr. Johnson explains that for this reason, there is keen interest in developing new membrane materials that can operate at very low water levels–or even in the complete absence of water (anhydrously).

"PEMs in today's hydrogen fuel cells are made of a polymer called Nafion, which only conducts protons when it has the right amount of water on it," says Dr. Johnson. "Too little water, the membrane dries out and protons stop moving. Too much and the membrane "floods" and stops operating, similar to how you could flood a carbureted engine with too much gasoline," he added.

Dr. Johnson and his team focused on graphane because when functionalized with hydroxyl groups it creates a more stable, insulating membrane to conduct protons. "Our computational modeling showed that because of graphane's unique structure, it is well suited to rapidly conduct protons across the and electrons across the circuit under anhydrous conditions," Dr. Johnson said. "This would enable hydrogen cars to be a more practical alternative vehicle."

Explore further: Fuel cells with PFIA-membranes

More information: Abhishek Bagusetty et al, Facile Anhydrous Proton Transport on Hydroxyl Functionalized Graphane, Physical Review Letters (2017). DOI: 10.1103/PhysRevLett.118.186101

Related Stories

Fuel cells with PFIA-membranes

December 19, 2016

HZB scientists have teamed up with partners of 3M Company in order to explore the water management in an alternative proton exchange membrane type, called PFIA. The experiments have been conducted using the infrared facilities ...

Chemical Could Revolutionize Polymer Fuel Cells

August 24, 2005

Heat has always been a problem for fuel cells. There’s usually either too much (ceramic fuel cells) for certain portable uses, such as automobiles or electronics, or too little (polymer fuel cells) to be efficient.

Tailor-made membranes for the environment

November 30, 2016

The combustion of fossil energy carriers in coal and gas power plants produces waste gases that are harmful to the environment. Juelich researchers are working on methods to not only reduce such gases, but also utilize them. ...

New process produces hydrogen at much lower temperature

December 1, 2016

Waseda University researchers have developed a new method for producing hydrogen that is fast, irreversible, and takes place at much lower temperatures using less energy. This innovation is expected to contribute to the spread ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.