Tailor-made membranes for the environment

November 30, 2016, Forschungszentrum Juelich
Transmission electron microscope image of the membrane, provided by the Ernst Ruska-Centre. The two phases for proton and electron conduction are marked in color: barium cerate doped with europium oxide (BCEO) and cerium doped with yttrium and europium oxide (CYO). Credit: Forschungszentrum Jülich

The combustion of fossil energy carriers in coal and gas power plants produces waste gases that are harmful to the environment. Juelich researchers are working on methods to not only reduce such gases, but also utilize them. They are developing ceramic membranes with which pure hydrogen can be separated from carbon dioxide and water vapor. The hydrogen can then be used as a clean energy carrier, for example in fuel cells.

In technical systems, membranes can be used to separate gases - in a manner that is more efficient and cost-effective than with established methods. Membrane systems thus enable the separation of harmful greenhouse gases with comparatively low losses. At the same time, they also make it possible to obtain high-purity for clean energy generation and storage, making a key technology for transforming the energy sector (Energiewende).

One option for separating hydrogen from gas mixtures is a two-phase membrane. "This consists of two ceramic materials. The individual grains are only a thousandth of a millimetre in size and exhibit both ionic and electronic conductivity," explains Dr. Mariya Ivanova from the Juelich Institute of Energy and Climate Research. The components of the hydrogen - protons and electrons - are thus transported individually through the membrane. On the other side, they combine to form high-purity hydrogen. This is made possible by tailor-made vacancies in the crystal lattice of the ceramics, which are occupied by protons. These protons, driven by pressure differences and temperature, are conducted through the material of the membrane. "They dock onto a and jump in the direction of the lower pressure to the next hydrogen ion, from vacancy to vacancy, until they form elementary hydrogen again on the other side," says Mariya Ivanova. "The electrons are transported through the second component of the ceramic and ensure that charge equalization occurs."

However, the method still has a number of weak points. For example, high temperatures are needed for hydrogen separation, thus meaning it requires a lot of energy. In addition, the membranes investigated so far are not stable and become unusable in a carbonaceous environment. The hydrogen flow rate is also not yet high enough. Nevertheless, the researchers headed by Mariya Ivanova have made some significant progress: by inserting foreign atoms into the , their membrane is more stable and can be used at lower temperatures. However, the greatest achievement is the increased hydrogen flow. "It is nearly twice as high as in all other cases that have been documented to date," says a delighted Ivanova.

The Juelich membranes used for the measurements are only the size of a 10 cent coin and half a millimetre thick. "It is still too early to be thinking about an industrial application," explains Ivanova. "We will continue to conduct research, searching for a suitable material with a high flow rate and stability as well as low costs. The next step will be to increase component size to make it fit for industrial application." The researchers are initially aiming to achieve an area of ten by ten square centimetres.

Explore further: Researchers discover a cell in spinach that uses sunlight to produce electricity and hydrogen

More information: Mariya E. Ivanova et al, Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ at intermediate temperatures, Scientific Reports (2016). DOI: 10.1038/srep34773

Related Stories

Plastic 'leaves' turn water into fuel

August 5, 2016

Monash University researchers have developed a new plastic material that can extract hydrogen from water. It could be the start of a water-fuelled energy revolution.

Hydrogen makes the natural gas network greener

April 22, 2016

Hydrogen from the natural gas pipeline – a separation technique developed by TU Wien is opening up new possibilities for our natural gas network and improves the ecological balance of hydrogen fuel cells.

Producing hydrogen cheaply through simplified electrolysis

April 28, 2015

A simplified and reliable device developed at EPFL should enable hydrogen production at low cost. Researchers were able to perform water electrolysis without using the expensive membrane placed between the electrodes in conventional ...

Graphene, the finest filter

January 5, 2016

Graphene can simplify production of heavy water and help clean nuclear waste by filtering different isotopes of hydrogen, University of Manchester research indicates.

Recommended for you

Scientists solve the golden puzzle of calaverite

September 21, 2018

Scientists from Russia and Germany have shed light on the crystalline structure of calaverite, foretelling the existence of a new gold compound previously unknown to chemists. The results of their study were published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.