Researchers successfully simulate a 64-qubit circuit

June 26, 2018, Science China Press
Plots of the log-transformed measurement outcome probabilities of 42-, 56- and 64-qubit simulation. Credit: ©Science China Press

Quantum computers are based on the principles of quantum mechanics. Compared with classical bits, qubits can be at the superposition between zero and one, so a quantum computer composed of qubits can calculate and store more data. Adding additional qubits can exponentially increase the computational capabilities of quantum computers, and the computational capabilities of quantum computers may soon surpass state-of-the-art supercomputers for certain tasks.

The last few years have seen a series of significant advances in , in particular regarding superconducting chips with reports of devices of 20 and 50 qubits with good fidelity. In the meantime, great progress has also been made with semiconductor quantum chips. The principle of quantum supremacy claims that the limit of classical computers would be transcended by a device of 50 qubits. Direct simulations of 50 qubits take about 16-PB of RAM to store the full vectors. Google and IBM teams have proposed some efficient methods for simulating the low-depth circuit, which raised this limit to 56 qubits (e.g., deferral of entanglement gates and Feynman path method).

Origin Quantum Company, cooperating with the team of Prof. Guang-Can Guo, presented a scheme of based on transforming two- gates, achieving a 64-qubit simulation of a universal random circuit of depth 22 using a 128-node cluster, and 56- and 42-qubit circuits on a single PC. In particular, by transforming several control-Z (CZ) gates to measurement and single-qubit gates, the circuit is mapped onto an additional 2n sub-circuits. These sub-circuits are formed by two blocks without any qubit entanglement between them, thereby converting an N qubit simulation problem into a group of N/2 The results of all the sub-circuits are then added together to reconstruct the final state. They also estimated that a 72-qubit circuit of depth 23 can be simulated in about 16 hours on a supercomputer identical to that used by the IBM team.

Their work enables simulating more qubits with less hardware burden and provides a new perspective for classical simulations. It only needs a single PC with GTX-1080Ti to calculate 42- and 56-qubit . A 64-qubit circuit was simulated with a 128-node cluster, but the hardware resources they used have been greatly reduced compared with other methods.

The complexity grows exponentially with qubit number and depth, so the simulation of more than 50 qubits will always have an upper bound in depth. Nevertheless, the simulation of more qubits system with small depth still plays an important role for the study of such as QFT and unsupervised machine learning. Moreover, the partitioning scheme could be combined with other simulation methods (e.g., Feynman path integral), to further reduce the complexity. These improvements may help to realize the simulation of many other quantum algorithms.

Explore further: Scientists demonstrate coherent coupling between a quantum dot and a donor atom in silicon

More information: Zhao-Yun Chen et al, 64-qubit quantum circuit simulation, Science Bulletin (2018). DOI: 10.1016/j.scib.2018.06.007

Related Stories

New quantum computer design to predict molecule properties

May 31, 2018

The standard approach to building a quantum computer with majoranas as building blocks is to convert them into qubits. However, a promising application of quantum computing—quantum chemistry—would require these qubits ...

Physicists set new record with 10-qubit entanglement

November 29, 2017

(Phys.org)—Physicists have experimentally demonstrated quantum entanglement with 10 qubits on a superconducting circuit, surpassing the previous record of nine entangled superconducting qubits. The 10-qubit state is the ...

Quantum transfer at the push of a button

June 15, 2018

In new quantum information technologies, fragile quantum states have to be transferred between distant quantum bits. Researchers at ETH have now realized such a quantum transmission between two solid-state qubits at the push ...

Researchers develop prototype of advanced quantum memory

April 12, 2018

Employees of Kazan Federal University and Kazan Quantum Center of Kazan National Research Technical University demonstrated an original layout of a prototype of multiresonator broadband quantum-memory interface.

Recommended for you

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.