Highly efficient, high-power short-pulse lasers based on Tm3+ doped materials

December 28, 2017, University of Electro Communications
Fig.1. Output powers of Tm doped short pulse laser as a function of pulse duration. Credit: University of Electro-Communications

Highly efficient high power short pulse lasers at the wavelength range of 2 µm based on Tm3+ doped materials have a variety of applications such as material processing, LiDAR, mid-infrared OPOs for wavelengths up to 12 μm, or mid-infrared supercontinuum generation. They also would enable direct coherent soft X-ray generation by high order harmonics generation.

For these applications, a light source with much higher conversion efficiency, average power, pulse energy, and shorter pulse duration is desirable.

Now, Masaki Tokurakawa and colleagues at Institute for Laser Science, University of Electro-communications, Tokyo, have developed novel 2 µm high power short pulse lasers based on new technique of fiber in-band pumping and Kerr-lens mode locking with a new Tm doped gain medium provided from University of Hamburg, Dr. Christian Kränkel.

Pulses as short as 115 fs and output power of 420 mW with conversion efficiency of ~20% were obtained. Compared with prior SESAM mode-locked Tm doped lasers pumped by Ti:Al2O3 lasers, this new method enabled generation of much higher output power and shorter pulse duration with higher conversion efficiency (Fig.1).

This is the first Kerr-lens mode-locking at a wavelength of 2 μm and it opens up possibilities for new highly efficient short pulse lasers at 2 μm. In the future, sub 50 fs generation at this would be possible.

Explore further: A shoe-box-sized chemical detector

More information: Kerr-lens mode-locked Tm3+:Sc2O3 single-crystal laser in-band pumped by an Er:Yb fiber MOPA at 1611 nm, Optics Letters, 42, 3185-3188 (2017).

Eisuke Fujita et al. High power narrow-linewidth linearly-polarized 1610 nm Er:Yb all-fiber MOPA, Optics Express (2016). DOI: 10.1364/OE.24.026255

Related Stories

A shoe-box-sized chemical detector

December 15, 2017

A chemical sensor prototype developed at the University of Michigan will be able to detect "single-fingerprint quantities" of substances from a distance of more than 100 feet away, and its developers are working to shrink ...

Improving the femtosecond ultrashort pulse laser

November 21, 2017

MXenes, conductive materials widely used in many industries, now have one more promising application: helping lasers fire extremely short femtosecond pulses, which last just millionths of a billionth of a second. The finding, ...

Recommended for you

Researchers study interactions in molecules using AI

October 19, 2018

Researchers from the University of Luxembourg, Technische Universität Berlin, and the Fritz Haber Institute of the Max Planck Society have combined machine learning and quantum mechanics to predict the dynamics and atomic ...

Pushing the extra cold frontiers of superconducting science

October 18, 2018

Measuring the properties of superconducting materials in magnetic fields at close to absolute zero temperatures is difficult, but necessary to understand their quantum properties. How cold? Lower than 0.05 Kelvin (-272°C).


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.