Making and controlling crystals of light

Optical microresonators convert laser light into ultrashort pulses travelling around the resonator's circumference. These pulses, called "dissipative Kerr solitons," can propagate in the microresonator maintaining their shape.

OSIRIS-REx's final four sample site candidates in 3-D

This animated flyover of each of the four candidate sample collection sites on asteroid Bennu, selected by NASA's OSIRIS-REx asteroid sample return mission, was produced using close-range data from the OSIRIS-REx Laser Altimeter ...

Watching electrons using extreme ultraviolet light

A new technique developed by a team at MIT can map the complete electronic band structure of materials at high resolution. This capability is usually exclusive to large synchrotron facilities, but now it is available as a ...

Ions clear another hurdle toward scaled-up quantum computing

Scientists at the Joint Quantum Institute (JQI) have been steadily improving the performance of ion trap systems, a leading platform for future quantum computers. Now, a team of researchers led by JQI Fellows Norbert Linke ...

Laser solitons: Theory, topology and potential applications

In almost all situations, even in a vacuum, light cannot travel endlessly without dissipating. Pulses of light known as solitons that propagate along fibres for long distances without changing their shape or losing focus ...

page 1 from 23