Ferroelectric oxides do the twist

Apr 12, 2012 By Anne Ju
Engineered electric polarizations are indicated by the gray arrows, a "twisting-like" distortion of the corner-connected oxygen octahedral that is common to many perovskite oxides. First-principles calculations reveal that carefully designed atomic layering, represented by alternating gold and magenta spheres forming an atomic-scale superlattice, allows the octahedral rotations to induce ferroelectricity.

(Phys.org) -- Some materials, by their nature, do what we want them to do -- notably, the ubiquitous, semiconducting silicon found in almost every electronic device. But sometimes, naturally occurring materials need a little nudge -- or in the case of recent Cornell research, a twist -- to make them useful.

Assistant professor of applied and Craig Fennie and Drexel University's James Rondinelli have published a method for turning a class of called perovskites into a material that's ferroelectric. The work was published April 10 by and also will be featured on the printed journal's inside cover.

is a property in which a spontaneous can be flipped by applying a small electric field, useful for low-power memory and switching devices. Traditional ferroelectric mechanisms, however, are often chemically incompatible with such phenomena as , limiting their use in new types of multifunctional devices.

The researchers' theory-only work, which employed density functional calculations, concluded that ferroelectricity in perovskites can be realized if their atomic structures are manipulated at the nanometer length scale and by slicing them only a few atoms thin, letting the natural twisting of their corner-shared octahedra -- the basic structural unit of perovskite crystals -- do the rest.

The researchers' engineered electric polarizations are the result of stacking chemically different perovskites into atomically thin striped-patterns, which allow their normal rotational patterns to induce ferroelectricity.

"In the past, those rotations and tilts didn't do anything, but by combining them in this way, they can be coupled to an electric field through polarization," Fennie said. "This is the first step in the broad field of using rotations that couple to an applied electric field to control the properties of materials."

Fennie and Rondinelli transformed their theoretical conclusions into experimental guidelines for chemists and materials scientists, with the goal of enabling ferroelectric materials by design.

"The strategy we applied in this work provides a framework for rapid materials discovery of functional properties in a variety of crystal families in advance of materials synthesis," Rondinelli said.

According to Fennie, the work illustrates that theory will play a pivotal role in identifying new material systems for integration into next-generation technologies; theoretical studies of materials are no longer limited to after-the-fact analysis of experimental data.

Explore further: Technique simplifies the creation of high-tech crystals

Related Stories

Multiferroics could lead to low-power devices

May 17, 2011

(PhysOrg.com) -- Magnetic materials in which the north and south poles can be reversed with an electric field may be ideal candidates for low-power electronic devices, such as those used for ultra-high data storage. But finding ...

Small and stable ferroelectric domains

Mar 28, 2011

Researchers are one step closer to figuring out a way to make nano-sized ferroelectric domains more stable, reports a new study in journal Science.

Scientists find new set of multiferroic materials

Oct 20, 2009

(PhysOrg.com) -- The trail to a new multiferroic started with the theories of a U.S. Department of Energy's Argonne National Laboratory scientist and ended with a multidisciplinary collaboration that created ...

Tunneling Across a Ferroelectric

Jul 14, 2006

University of Nebraska-Lincoln physicist Evgeny Tsymbal's groundbreaking identification of an emerging research field in electronic devices earned publication this week in Science magazine.

Recommended for you

New approach to form non-equilibrium structures

11 hours ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

13 hours ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Unleashing the power of quantum dot triplets

17 hours ago

Quantum computers have yet to materialise. Yet, scientists are making progress in devising suitable means of making such computers faster. One such approach relies on quantum dots—a kind of artificial atom, ...

Chemist develops X-ray vision for quality assurance

17 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

17 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

User comments : 0