Quantum tunneling pushes the limits of self-powered sensors

Shantanu Chakrabartty's laboratory has been working to create sensors that can run on the least amount of energy. His lab has been so successful at building smaller and more efficient sensors, that they've run into a roadblock ...

Collaboration sparks new model for ceramic conductivity

As insulators, metal oxides—also known as ceramics—may not seem like obvious candidates for electrical conductivity. While electrons zip back and forth in regular metals, their movement in ceramic materials is sluggish ...

AI may offer a better way to ID drug-resistant superbugs

Biomedical engineers at Duke University have shown that different strains of the same bacterial pathogen can be distinguished by a machine learning analysis of their growth dynamics alone, which can then also accurately predict ...

Mechanical forces shape bacterial biofilms' puzzling patterns

Belying their slimy natures, the sticky patches of bacteria called biofilms often form intricate, starburst-like patterns as they grow. Now, researchers at Princeton University have combined expertise in molecular biology, ...

page 1 from 12