Mystery of color patterns of reef fish solved

December 5, 2018, ARC Centre of Excellence in Coral Reef Studies
Two closely related species living together need different colors to stand out. The Reticulated Butterflyfish (Chaetodon reticulatus; left) and Meyer's Butterflyfish (Chaetodon meyeri; right) are close relatives that have overlapping ranges in the Indo-Pacific and are both found on the Great Barrier Reef. Despite only being separate species for less than a million years (a blink of an eye in evolutionary time), they have evolved very different color patterns making them stand apart from each other on reefs where they are both found. Credit: Tane Sinclair-Taylor

Scientists have solved the mystery of why some closely-related species of an iconic reef fish have vastly different colour patterns, while others look very similar.

Innovative research led by scientists at the ARC Centre of Excellence for Coral Reef Studies based at James Cook University, examined the differences in appearance of 42 species of the butterflyfish.

They found that on reefs where closely related butterflyfish species ranges overlap, the differences in colour patterns between the two were most pronounced.

The team used high-resolution digital colour photographs to quantify colour patterns and explore how they were influenced by evolutionary processes.

"Our results show that, over millions of years, butterflyfishes have evolved the greatest diversity of visual markings when they live in the same area as other, closely ," said lead author and Ph.D. student Christopher Hemingson.

"Crucially, we also found that this only happens when both species have ranges that are of similar sizes," said Mr Hemingson.

"We were surprised to find that when one species' range is a lot larger than the neighbouring species, the is reversed—with the colour pattern of overlapping species found to be less different," said co-author Dr. Peter Cowman.

Professor David Bellwood, a co-author and senior investigator, noted that this is the first time geographic range dynamics have been shown to be an important predictor of colour differences among marine fish species.

"This research is the first of its kind to quantify colour and pattern differences simultaneously among butterflyfish species. It showed us that pattern differences can evolve very quickly among species (within 300,000 years) but then remain stable over millions of years," said Professor Bellwood.

"Colour is far more complicated than just looking different from other species," said Mr Hemingson.

"These also depend specifically on what other species are also present. It is an interesting piece to the puzzle and may help explain why reef fishes are so colourful."

The paper "Colour pattern divergence in fish is rapid and driven by both range overlap and symmetry" is published in the journal Ecology Letters.

Explore further: Stunning new species of sea slugs discovered

More information: Christopher R. Hemingson et al, Colour pattern divergence in reef fish species is rapid and driven by both range overlap and symmetry, Ecology Letters (2018). DOI: 10.1111/ele.13180

Related Stories

Stunning new species of sea slugs discovered

April 5, 2018

A small team of scientists at The University of Western Australia, the Western Australian Museum, and the California Academy of Sciences has identified 18 new species of sea slugs, including some only found in WA.

The devil is in the detail

January 9, 2015

Researchers have looked at a species of fish to help unravel one of the biggest mysteries in evolutionary biology.

Copycat sea slugs vary in toxicity and taste

June 7, 2018

University of Queensland-led research found sea slugs that mimic the colours of other slugs to scare off predators do not have the same chemical defences as the species they are copying.

Recommended for you

Looking for LUCA, the last universal common ancestor

December 18, 2018

Around 4 billion years ago there lived a microbe called LUCA: the Last Universal Common Ancestor. There is evidence that it could have lived a somewhat 'alien' lifestyle, hidden away deep underground in iron-sulfur rich hydrothermal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.