Saving, diversifying honey bees: Researchers preparing bee semen bank

June 13, 2013 by Bob Hoffmann
Honey bee with parasite on back.

( —Washington State University researchers are preparing to use liquid nitrogen to create a frozen semen bank from select U.S. and European honey bee colonies.

At the same time, the researchers will use genetic cross-breeding methods to produce more diverse, resilient honey bee subspecies that could help thwart the nation's current colony collapse crisis.

Honey bees face a lot of challenges, said Steve Sheppard, professor of entomology at WSU. Invasive mites can sap a brood's strength and vector viruses. Pesticides can build up in the brood comb and gradually weaken the bees. And while the agricultural practice of monoculture provides a lot of food, it offers little of the nutritional variety that bees need.

Some of these threats may weaken or kill a hive on their own, but a combination of factors is thought to be the cause of , in which the abruptly disappear, and the entire local population is doomed.

Honey bee ban in 1922

Concerns over honey bee safety in the United States are not new. In 1922, shortly after tracheal mites were identified as the likely cause of bee kills on England's , the United States restricted the importation of live honey bees.

"The ban was fairly effective," said Susan Cobey, a WSU research associate working with Sheppard. "It prevented tracheal mites from reaching our shores until 1984."

Varroa mite threat

Just a few years later a more serious threat, the Varroa mite, with the suitably ominous scientific name Varroa destructor, entered the United States. "The feeds on the developing bees, or brood, and also introduces bacteria and viruses that damage the health of the hive," Cobey said.

Sheppard and Cobey discuss the challenges facing honey bees and the efforts to expand the U.S. honey bee gene pool. Credit: WSU College of Agricultural, Human and Natural Resource Sciences.

"Varroa mites will normally kill a colony within two years without intervention by a beekeeper," Sheppard explained. Intervention often comes in the form of chemical miticides, which are tolerated by bees in the short term, but cause harm over the long term as chemical residues accumulate in hives.

Creating smarter, stronger bees

Plant and animal breeders often seek to overcome challenges by finding resistant specimens to selectively breed, incorporating the resistance into the overall population. However, U.S. entomologists must also contend with a limited honey bee gene pool because of the import ban.

28 subspecies of honey bees

"Honey bees, Apis mellifera, have 28 recognized subspecies—in Europe, Africa, and Asia, the general vicinity of where honey bees are thought to have originated," said Sheppard. Evaluation of this extensive genetic diversity (such as for genes that may help honey bees adapt to differences in the New World) by U.S. bee breeders was effectively halted by this country's import restrictions.

Importing bees from Italy, Georgia, Alps

In an effort to find and utilize the needed genes, the USDA granted WSU a permit in 2008 to import honey bee semen for breeding purposes, subject to strict screening for viruses. To meet the various goals of beekeepers in different climate zones across the United States, Sheppard and his colleagues identified three subspecies for import.

Commercial beekeepers in southern states often want bees that reproduce quickly to provide maximum pollination of early-blooming crops like almonds. WSU plant breeders have been collecting semen from Italian honey bees for this trait. Beekeepers in colder climates want bees that are more reluctant to reproduce at the first warm spell in spring, as a cold snap could kill the vulnerable brood.

To find appropriate genetic stock, Sheppard and colleagues have been collecting semen from Carniolan bees of the eastern Alps and Caucasian bees from the mountains of Georgia (formerly part of the Soviet Union). The semen is imported by special permit and tested for viruses. Queen inseminated with approved semen can then be released to queen bee producers.

Collecting and storing genetic material

The semen itself is fairly easy to collect, said Cobey. In general terms, if you apply a tiny amount of pressure to a mature drone's abdomen, it will push out the semen, which can be collected in a syringe equipped with a capillary tube.

Live semen will survive at room temperature for about 10-14 days, allowing Cobey to collect it and transport it back to her laboratory, where it can be frozen or injected into a selected queen bee's oviduct, to fertilize it.

The semen will be collected from the strongest and best stock in Europe, then injected into the strongest and best queen bee stock from the United States, thereby helping to strengthen and diversify U.S. bee colonies.

The question of how to store honey bee genetic material for years, as is already the practice with other animals of agricultural importance, has been solved with the help of Sheppard's graduate student Brandon Hopkins. Hopkins discovered that maintains the viability for decades, helping preserve imperiled subspecies in a genetic repository.

Explore further: Increasing genetic diversity of honey bees needed

Related Stories

Increasing genetic diversity of honey bees needed

March 12, 2012

( -- Increasing the overall genetic diversity of honey bees will lead to healthier and hardier bees that can better fight off parasites, pathogens and pests, says bee breeder-geneticist Susan Cobey of the University ...

Fungus fights deadly bee mites in a two-pronged attack

October 22, 2012

(—A fungus normally used to control insect pests may help honey bees protect themselves from a destructive mite by both infecting the mites and preventing suppression of the bee immune system, says a team of bee ...

Building Better Bees

October 21, 2008

A UC Davis researcher known for her honey bee line "New World Carniolans" has crossed her bees with their Old World counterparts to enhance their positive characteristics.

Nearly one in three US honeybees lost in winter 2012-13

May 8, 2013

( —U.S. beekeepers lost nearly one in every three honey bee colonies over the winter of 2012-2013, according to an annual survey conducted by the Bee Informed Partnership and the Apiary Inspectors of America.

Bees Throw Out Mites

September 11, 2009

Honey bees are now fighting back aggressively against Varroa mites, thanks to Agricultural Research Service (ARS) efforts to develop bees with a genetic trait that allows them to more easily find the mites and toss them out ...

Recommended for you

Stressed-out meerkats less likely to help group

September 22, 2017

Dominant female meerkats use aggression to keep subordinates from breeding, but a new study finds this negative behavior also can result in the latter becoming less willing to help within the group.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.