Scientists reveal how animals find their way 'in the dark'

March 22, 2016
Mapping neurons that control spontaneous swimming behavior across the zebrafish brain. Gray and cyan are anatomical markers, with cyan showing neurons that project to the spinal cord. The green, red, and blue cells result from functional mapping, where green cells control leftward turning, the red cells control rightward turning, and the blue cells are tuned to forward swimming. These populations of neurons guide spontaneous zebrafish behavior when external environmental cues are lacking. Credit: Dunn, Yu, Narayan, Randlett, Naumann, Yang, Schier, Freeman, Engert, and Ahrens

Scientists have revealed the brain activity in animals that helps them find food and other vital resources in unfamiliar environments where there are no cues, such as lights and sounds, to guide them.

Animals that are placed in such environments display spontaneous, seemingly random behaviors when foraging. These behaviors have been observed in many organisms, although the brain activity behind them has remained elusive due to difficulties in knowing where to look for neural signals in large vertebrate brains.

Now, in a study to be published in the journal eLife, researchers have used whole-brain imaging in larval zebrafish to discover how their brain activity translates into spontaneous behaviors. They found that the animals' behavior in plain surroundings is not random at all, but is characterized by alternating left and right turn "states" in the brain, where the animals are more likely to perform repeated left and right turning maneuvers, respectively.

"We noted that a turn made by the zebrafish was likely to follow in the same direction as the preceding turn, creating alternating "chains" of turns biased to one side and generating conspicuous, slaloming swim trajectories," says first author Timothy Dunn, a postdoctoral researcher at Harvard University.

"Freely swimming fish spontaneously chained together turns in the same direction for approximately five to 10 seconds on average, and sometimes for much longer periods. This significantly deviates from a random walk, where movements follow no discernible pattern or trend."

By analyzing the relationship between spontaneous brain activity and spontaneous behavior in the , the researchers generated whole- maps of neuronal structures that correlated with the patterns in the animals' movements.

They discovered a nucleus in the zebrafish hindbrain, which participates in a simple but potentially vital behavioral algorithm that may optimize foraging when there is little information about the environment available to the animal.

As such behavioral strategies must exist in other that explore environments much larger than themselves, the team expects that the neural systems observed in the zebrafish must also exist in other organisms.

"Overall, our whole-brain analysis, neural activity experiments, and anatomical characterization of zebrafish revealed a circuit contributing to the patterning of a spontaneous, self-generated behavior," explains co-first author Yu Mu, a postdoctoral researcher at Janelia Research Campus.

"As our study makes very specific predictions about this circuit, future experiments will be required to validate its critical components. It will also be interesting to see if different environmental contexts and the motivational state of zebrafish influence their spontaneous swim patterns."

Explore further: Our brain has switch board to guide behavior in response to external stimuli

More information: Timothy W Dunn et al. Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion, eLife (2016). DOI: 10.7554/eLife.12741

Related Stories

Fish brains help explain human sensory perception

February 25, 2016

Advanced calcium imaging of zebrafish brains is helping University of Queensland researchers discover how sensory stimuli such as sights and sounds are integrated in the human brain.

Watching sensory information translate into behavior

February 12, 2016

It remains one of the most fundamental questions in neuroscience: How does the flood of sensory information—everything an animal touches, tastes, smells, sees, and hears—translate into behavior?

A role for neural noise in animal behavior

November 25, 2015

Researchers from EPFL and UNIL have used flies to show how behaviors may be shaped by seemingly random brain activity. This study raises new questions about the role of neural noise in moment-to-moment decisions.

Recommended for you

How Frankenstein saved humankind from probable extinction

October 28, 2016

Frankenstein as we know him, the grotesque monster that was created through a weird science experiment, is actually a nameless Creature created by scientist Victor Frankenstein in Mary Shelley's 1818 novel, "Frankenstein." ...

Closer look reveals tubule structure of endoplasmic reticulum

October 28, 2016

(—A team of researchers from the U.S. and the U.K. has used high-resolution imaging techniques to get a closer look at the endoplasmic reticulum (ET), a cellular organelle, and in so doing, has found that its structure ...

Computer model is 'crystal ball' for E. coli bacteria

October 28, 2016

It's difficult to make predictions, especially about the future, and even more so when they involve the reactions of living cells—huge numbers of genes, proteins and enzymes, embedded in complex pathways and feedback loops. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.