New milestone could help magnets end era of computer transistors

Nov 19, 2013
New milestone could help magnets end era of computer transistors
As current passes through a strip of tantalum, electrons with opposite spins separate. Researchers used the resulting polarization to create a nanomagnetic switch that could one day replace computer transistors. Credit: Debanjan Bhowmik, UC Berkeley

(Phys.org) —New work by researchers at UC Berkeley could soon transform the building blocks of modern electronics by making nanomagnetic switches a viable replacement for the conventional transistors found in all computers.

Semiconductor-based , the on-off switches that direct the flow of electricity and form a computer's nervous system, have been consuming greater chunks of power at increasingly hotter temperatures as processing speeds grow. For more than a decade, researchers have been pursuing magnets as an alternative to transistors because they require far less energy needs when switching. However, until now, the power needed to generate the field to orient the magnets so they can easily clock on and off has negated much of the energy savings that would have been gained by moving away from transistors.

UC Berkeley researchers overcame this limitation by exploiting the special properties of the rare, heavy metal tantalum.

In a paper published online Sunday, Nov. 17, in the journal Nature Nanotechnology, the researchers describe how they created a so-called Spin Hall effect by using nanomagnets placed on top of tantalum wire and then sending a current through the metal. Electrons in the current will randomly spin in either a clockwise or counterclockwise direction. When the current is sent through tantalum's atomic core, the metal's physical properties naturally sort the electrons to opposing sides based on their direction of spin. This creates the polarization researchers exploited to switch magnets in a logic circuit without the need for a .

"This is a breakthrough in the push for low-powered computing," said study principal investigator Sayeef Salahuddin, UC Berkeley assistant professor of electrical engineering and computer sciences. "The power consumption we are seeing is up to 10,000 times lower than state-of-the-art schemes for nanomagnetic computing. Our experiments are the proof of concept that magnets could one day be a realistic replacement for transistors."

Explore further: Protons fuel graphene prospects

More information: "Spin Hall effect clocking of nanomagnetic logic without a magnetic field." Debanjan Bhowmik, Long You, Sayeef Salahuddin. Nature Nanotechnology (2013). DOI: 10.1038/nnano.2013.241

Related Stories

Using heat to make magnets

Oct 17, 2013

EPFL scientists have provided the first evidence ever that it is possible to generate a magnetic field by using heat instead of electricity. The phenomenon is referred to as the Magnetic Seebeck effect or ...

Researchers build switchable magnetic logic gate

Jan 31, 2013

(Phys.org)—A team of scientists from several research centers in South Korea, has succeeded in building a logic circuit that is based on switchable magnetism, rather than electronics. They describe their ...

Recommended for you

Protons fuel graphene prospects

10 hours ago

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, University of Manchester researchers have found.

Cooling with the coldest matter in the world

Nov 24, 2014

Physicists at the University of Basel have developed a new cooling technique for mechanical quantum systems. Using an ultracold atomic gas, the vibrations of a membrane were cooled down to less than 1 degree ...

Magnetic fields and lasers elicit graphene secret

Nov 24, 2014

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have studied the dynamics of electrons from the "wonder material" graphene in a magnetic field for the first time. This led to the discovery of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.