Team identifies proton pathway in photosynthesis

Apr 22, 2013 by Elizabeth Gardner

(Phys.org) —A Purdue University-led team has revealed the proton transfer pathway responsible for a majority of energy storage in photosynthesis. Through photosynthesis, plants, algae and bacteria convert sunlight, carbon dioxide and water into chemical energy stored in the membrane of special cells, a process similar to charging a battery, said William A. Cramer, the Henry Koffler Distinguished Professor of Biological Sciences and research team leader.

"The key to photosynthesis is the movement of electrical charge from a positive to a negative pole, just as in a battery," Cramer said. "In this case, the electrical charge is in the form of electrons and protons passed along by and in a 'bucket brigade' through the . We identified and found the structure and orientation of the individual bucket carriers."

His team looked at the pathway through the cytochrome complex, a group of eight proteins responsible for transporting two-thirds of the protons that energize the plant cell "battery." The proteins are made up of different sequences of amino acids, including those that participate in the "bucket brigade" of .

Cramer credits S. Saif Hasan, a graduate student in his research group who will receive his doctoral degree in May, with leading the project.

The team used X-ray crystallography to describe the molecular structure of the cytochrome complex isolated from cyanobacteria, the most primitive photosynthetic organism.

A paper detailing the National Institutes of Health-funded work was published in the Proceedings of the National Academy of Sciences.

Although a mechanism for involving transfer of protons across was the subject of the 1978 and advances had been made in its understanding, the amino acids involved and how they are connected for proton transfer in the photosynthetic protein complex was unknown, Cramer said.

In addition to Cramer and Hasan, team members include E. Yamashita of the Institute for Protein Chemistry in Osaka, Japan, and D. Baniulis of the Lithuanian Research Institute for Agriculture and Forestry.

Understanding details of the process of photosynthesis aids work toward the development of artificial photosynthesis, which could allow for the conversion of solar energy into alternative environmentally friendly sources of biofuels.

The findings also contribute to the understanding of membrane proteins, which regulate all traffic into and out of the cell and are important for drug delivery and structural biology.

Membrane proteins are fat-soluble, which makes them especially difficult to isolate and crystallize for examination, Cramer said.

"Membrane proteins dissolve only in fat, not water, and if you pull them out of the cell membrane they tend to congeal like grease on a frying pan dipped in cold water," he said. "Scientists have only been able to determine the structure of relatively few of this group of proteins, and we have much more to learn."

Explore further: Major step forward in understanding of viruses as scientists unlock exact structure of Hep A virus

More information: Quinone-Dependent Proton Transfer Pathways in the Photosynthetic Cytochrome b6f Complex, S. Saif Hasan, Eiki Yamashita, Danas Baniulis, and William A. Cramer, Proceedings of the National Academy of Sciences, 2013.

ABSTRACT
As much as two-thirds of the proton gradient used for transmembrane free energy storage in oxygenic photosynthesis is generated by the cytochrome b6f complex. The proton uptake pathway from the electrochemically negative (n) aqueous phase to the n-side quinone binding site of the complex, and a probable route for proton exit to the positive phase resulting from quinol oxidation, are defined in a 2.70-Å crystal structure and in structures with quinone analog inhibitors at 3.07 Å (tridecyl-stigmatellin) and 3.25 Å (2-nonyl-4-hydroxyquinoline N-oxide) resolution. The simplest n-side proton pathway extends from the aqueous phase via Asp20 and Arg207 (cytochrome b6 subunit) to quinone bound axially to heme cn. On the positive side, the heme-proximal Glu78 (subunit IV), which accepts protons from pastosemiquinone, defines a route for H+ transfer to the aqueous phase. These pathways provide a structure-based description of the quinone-mediated proton transfer responsible for generation of the transmembrane electrochemical potential gradient in oxygenic photosynthesis

Related Stories

Researchers discover proton diode

Sep 02, 2010

Biophysicists in Bochum have discovered a diode for protons: just like the electronic component determines the direction of flow of electric current, the "proton diode" ensures that protons can only pass through ...

Putting light-harvesters on the spot

Oct 19, 2011

How the light-harvesting complexes required for photosynthesis get to their site of action in the plant cell is reported by RUB biologists in the Journal of Biological Chemistry. The team led by Prof. Dr. Danja Schunemann has de ...

Cell: Protein folding via charge zippers

Jan 18, 2013

Membrane proteins are the "molecular machines" in biological cell envelopes. They control diverse processes, such as the transport of molecules across the lipid membrane, signal transduction, and photosynthesis. ...

Recommended for you

Researchers create designer 'barrel' proteins

2 hours ago

Proteins are long linear molecules that fold up to form well-defined 3D shapes. These 3D molecular architectures are essential for biological functions such as the elasticity of skin, the digestion of food, ...

World's fastest manufacture of battery electrodes

9 hours ago

New world record: Scientists at the Karlsruhe Institute of Technology (KIT) increased the manufacturing speed of electrode foils coated batch-wise by a factor of three – to 100 meters per minute. This was ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Whydening Gyre
1 / 5 (1) Apr 22, 2013
Now THIS is an intriguing article. Where in the process, what additional elements had to be added, etc. to begin the ion channeling process... Calcium is the carrier assist, but what actually initiates that first covalent electron transfer? Very interesting!