How 'pioneer' protein turns stem cells into organs

Early on in each cell, a critical protein known as FoxA2 simultaneously binds to both the chromosomal proteins and the DNA, opening the flood gates for gene activation, according to a new study led by researchers in the Perelman ...

Bacterial enzyme could become a new target for antibiotics

MIT and Harvard University chemists have discovered the structure of an unusual bacterial enzyme that can break down an amino acid found in collagen, which is the most abundant protein in the human body.

Composing new proteins with artificial intelligence

Proteins are the building blocks of life, and consequently, scientists have long studied how they can improve proteins and design completely new proteins that perform new functions and processes.

Blocking sugar structures on viruses and tumor cells

During a viral infection, viruses enter the body and multiply in its cells. Viruses often specifically attach themselves to the sugar structures of the host cells, or present characteristic sugar structures on their surface ...

Same genes, same conditions, different transport

The bacterium Lactococcus lactis, which plays an important role in the dairy industry, is unable to produce the amino acid methionine and has to rely on uptake from the environment. To do this, the bacteria have two systems ...

Protein discovered inside a meteorite

A team of researchers from Plex Corporation, Bruker Scientific LLC and Harvard University has found evidence of a protein inside of a meteorite. They have written a paper describing their findings and have uploaded it to ...

page 1 from 100

Amino acid

In chemistry, an amino acid is a molecule containing both amine and carboxyl functional groups. These molecules are particularly important in biochemistry, where this term refers to alpha-amino acids with the general formula H2NCHRCOOH, where R is an organic substituent. In the alpha amino acids, the amino and carboxylate groups are attached to the same carbon atom, which is called the α–carbon. The various alpha amino acids differ in which side chain (R group) is attached to their alpha carbon. They can vary in size from just a hydrogen atom in glycine through a methyl group in alanine to a large heterocyclic group in tryptophan.

Amino acids are critical to life, and have a variety of roles in metabolism. One particularly important function is as the building blocks of proteins, which are linear chains of amino acids. Amino acids are also important in many other biological molecules, such as forming parts of coenzymes, as in S-adenosylmethionine, or as precursors for the biosynthesis of molecules such as heme. Due to this central role in biochemistry, amino acids are very important in nutrition.

Amino acids are commonly used in food technology and industry. For example, monosodium glutamate is a common flavor enhancer that gives foods the taste called umami. Beyond the amino acids that are found in all forms of life, amino acids are also used in industry. Applications include the production of biodegradable plastics, drugs and chiral catalysts.

This text uses material from Wikipedia, licensed under CC BY-SA