A nano-Solution to global water problem: Nanomembranes could filter bacteria

Feb 21, 2011

(PhysOrg.com) -- New nanomaterials research from the University at Buffalo could lead to new solutions for an age-old public health problem: how to separate bacteria from drinking water.

To the naked eye, both and germs are invisible -- objects so tiny they are measured by the nanometer, a unit of length about 100,000 times thinner than the width of a human hair.

But at the microscopic level, the two actually differ greatly in size. A single water molecule is less than a nanometer wide, while some of the most diminutive bacteria are a couple hundred.

Working with a special kind of polymer called a block copolymer, a UB research team has synthesized a new kind of nanomembrane containing pores about 55 in diameter -- large enough for water to slip through easily, but too small for bacteria.

The pore size is the largest anyone has achieved to date using block copolymers, which possess special properties that ensure pores will be evenly spaced, said Javid Rzayev, the UB chemist who led the study. The findings were published online on Jan. 31 in and will appear in the journal's print edition later this year, with UB chemistry graduate student Justin Bolton as lead author.

"These materials present new opportunities for use as filtration membranes," said Rzayev, an assistant professor of chemistry. "Commercial membranes have limitations as far as pore density or uniformity of the pore size. The membranes prepared from block copolymers have a very dense distribution of pores, and the pores are uniform."

"There's a lot of research in this area, but what our research team was able to accomplish is to expand the range of available pores to 50 nanometers in diameter, which was previously unattainable by block-copolymer-based methods," Rzayev continued. "Making pores bigger increases the flow of water, which will translate into cost and time savings. At the same time, 50 to 100 nm diameter pores are small enough not to allow any bacteria through. So, that is a sweet spot for this kind of application."

The new nanomembrane owes its special qualities to the polymers that scientists used to create it. Block copolymers are made up of two polymers that repel one another but are "stitched" together at one end to form the single copolymer.

When many block copolymers are mixed together, their mutual repulsion leads them to assemble in a regular, alternating pattern. The result of that process, called self-assembly, is a solid nanomembrane comprising two different kinds of polymers.

To create evenly spaced in the material, Rzayev and colleagues simply removed one of the polymers. The pores' relatively large size was due to the unique architecture of the original , which were made from bottle-brush molecules that resemble round hair brushes, with molecular "bristles" protruding all the way around a molecular backbone.

Explore further: Thinnest feasible nano-membrane produced

Related Stories

Nanopores make sterile filtration more reliable

Jul 01, 2010

Irregular pores, low flow rates: The plastic membrane filters used in sterile filtration do not always ensure that conditions are really sterile. Filter membranes of aluminum oxide are more reliable - the ...

New synthetic self-assembling macromolecules mimic nature

Mar 19, 2007

We take "self-assembly" for granted when it is carried out by the biopolymers which are our hair, teeth, or skin. But when scientists devise new ways for molecules to self assemble into new materials, it is an important achievement.

Moving polymers through pores

Jul 14, 2010

The movement of long chain polymers through nanopores is a key part of many biological processes, including the transport of RNA, DNA, and proteins. New research reported in The Journal of Chemical Physics, which ...

Artificial Nanopores Take Analyte Pulse

Jul 31, 2007

Resistive pulse sensing represents a very attractive method for identifying and quantifying biomedical species such as drugs, DNA, proteins, and viruses in solution.

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

SmartK8
not rated yet Feb 22, 2011
I don't want to be a downer, but what about viruses ?

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...