How a toxic chromium species could form in drinking water

How a toxic chromium species could form in drinking water
Scale on the inside of cast iron alloy pipes can react with residual disinfectant in the water to release Cr(VI). Credit: Adapted from Environmental Science & Technology 2020, DOI: 10.1021/acs.est.0c03922

The water crisis in Flint, Michigan, brought much-needed attention to the problem of potentially toxic metals being released from drinking water distribution pipes when water chemistry changes. Now, researchers reporting in ACS' Environmental Science & Technology have investigated how hexavalent chromium, known as Cr(VI), can form in drinking water when corroded cast iron pipes interact with residual disinfectant. Their findings could suggest new strategies to control Cr(VI) formation in the water supply.

The metal chromium, known as Cr(0), is found in cast iron alloy, which is the most widely used plumbing material in water distribution systems. As pipes corrode, a buildup of deposits, known as scale, forms on the pipes' inner walls. Trace chemicals in water can react with scale, forming new compounds that could be released into the water. Some of these compounds contain Cr(VI), which, at high doses, can cause , liver damage, reproductive issues and developmental problems. In 2014, California set a drinking water standard of 10 μg/L Cr(VI), but the guideline was later withdrawn because no economically feasible treatment to remove Cr(VI) from tap water existed. Haizhou Liu and colleagues wanted to find out how exactly Cr(VI) makes its way into drinking water, which might reveal new ways to prevent its formation.

The researchers collected two sections of cast iron from two drinking water distribution systems in the U.S.: one from a system using groundwater with naturally high Cr(VI) levels (11-24 μg/L), and the other from a system using surface water with undetectable Cr(VI). The team scraped off scale from the pipes and analyzed its composition. The levels of total Cr were about 18 times higher in the first pipe than in the second. In both pipes, chromium existed in two oxidation states, Cr(0) and Cr(III). When the researchers added a chlorine- or bromine-containing disinfectant to the scale, it quickly reacted with Cr(0), rather than Cr(III) as previously suspected, to form Cr(VI). To help mitigate Cr(VI) levels, adding less-reactive disinfectants to treat drinking could be explored, and cast iron pipes with chromium alloy should be used with caution, the researchers say.


Explore further

Keeping lead out of drinking water when switching disinfectants

More information: "Hexavalent Chromium Release in Drinking Water Distribution Systems: New Insights into Zerovalent Chromium in Iron Corrosion Scales" Environmental Science & Technology (2020). pubs.acs.org/doi/abs/10.1021/acs.est.0c03922
Citation: How a toxic chromium species could form in drinking water (2020, September 30) retrieved 28 October 2020 from https://phys.org/news/2020-09-toxic-chromium-species.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
274 shares

Feedback to editors

User comments