Researchers reveal jamming in cellular motor protein traffic

November 17, 2017, Netherlands Organisation for Scientific Research (NWO)

To keep a cell alive, molecular motor proteins constantly transport building blocks and waste across the cell, along its biopolymer network. Because of the high density of these proteins, jamming effects are believed to affect this transport, just like traffic jams affect street traffic. However, not much is known about such crowding effects in cellular traffic. Researchers in the groups of Erwin Peterman and Peter Schall at the LaserLaB (VU) and the Institute of Physics (UvA) have now found a way to directly visualize and measure these jamming effects in cellular traffic. Their results, which have been published in Physical Review X this week, yield new insight into motor interactions in the crowded molecular motor transport. This project is receiving funding from NWO's Complexity programme.

Living cells require a constant of nutrition and waste. This is achieved by molecular that transport organelles and other building blocks along the network of biopolymers of the cytoskeleton, which spans the volume of the cell. The walking mechanism of the individual motors has been studied extensively: Kinesin-1, for example, an important representative of the Kinesin family of proteins, moves by the subsequent, hand-over-hand stepping of two motor domains in well-defined steps of 8 nanometers. What has so far remained unclear is how the motors walk and interact collectively. Due to their dense population, crowding effects could crucially affect the transport across the cell, but so far these effects could not be accessed in the densely populated regime.

Speed measurements

Researchers at the UvA and VU have now made significant progress on this issue by combining a new correlation imaging technique with physical modelling. Like in previous studies, they used fluorescently labelled motors under well-defined conditions on microtubules - components of the cell's cytoskeleton - assembled on a glass slide. By correlating the moving image points of the fluorescent motor proteins in space and time, the researchers could for the first time measure their velocity and run length along the filament at high densities.

These measurements revealed a remarkable slow-down of the motors as density increased, demonstrating the formation of . These jams were directly confirmed in the observed traces of the motors. Furthermore, the researchers showed that these traffic jams were well described by simple transport models, in which the motor proteins are modelled by hard particles that pile up as they get into each other's way. Surprisingly however, the different motor species showed very different lengths over which they interact: from their physical size as assumed in the simple model, up to a distance 30 times larger than this size.

While clarifying the mechanism behind this long-range interaction remains an intriguing open problem for future research, the current results already illustrate the very different characteristics of the motors. Learning more about these motor -specific properties could help to cope with, or even suppress jamming effects in the . For example, it is well known that, in diseases like Alzheimer's disease, neuronal transport is severely hampered, resulting in local accumulations of proteins and their cargos, which could play a role in neurodegeneration.

Explore further: The motor protein dancing in all our cells

More information: Daniël M. Miedema et al. Correlation Imaging Reveals Specific Crowding Dynamics of Kinesin Motor Proteins, Physical Review X (2017). DOI: 10.1103/PhysRevX.7.041037

Related Stories

The motor protein dancing in all our cells

September 26, 2017

Motor proteins drive many of the essential processes in our cells. They move with a dancing motion, as Professor Erik Schäffer and his team have shown in a new study. In order to observe the tiny proteins, which are measured ...

How a molecular traffic jam impacts cell division

November 7, 2011

Interdisciplinary research between biology and physics aims to understand the cell and how it organizes internally. The mechanisms inside the cell are very complicated. LMU biophysicist Professor Erwin Frey, who is also a ...

Resolving traffic jams in human ALS motor neurons

October 17, 2017

A team of researchers at VIB and KU Leuven used stem cell technology to generate motor neurons from ALS patients carrying mutations in FUS. They found disturbed axonal transport in these motor neurons, but also identified ...

Molecular microscopy illuminates molecular motor motion

July 25, 2017

A toddler running sometimes loses footing because both feet come off the ground at the same time. Kinesin motors that move materials around in cells have the same problem, which limits how fast they can traverse a microtubule ...

Recommended for you

Physicist describes the shape of a wormhole

October 17, 2018

A RUDN physicist demonstrated how to describe the shape of any symmetrical wormhole—a black hole that theoretically can be a kind of a portal between any two points in space and time—based on its wave spectrum. The research ...

Physics: Not everything is where it seems to be

October 16, 2018

Scientists at TU Wien, the University of Innsbruck and the ÖAW have for the first time demonstrated a wave effect that can lead to measurement errors in the optical position estimation of objects. The work now published ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

EyeNStein
not rated yet Nov 17, 2017
Autophagy of transport proteins will also have a negative affect on waste and construction/repair transport.

This may be why ME/CFS sufferers take days to rebuild their cellular energy systems after a period of energy deficit.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.