Mixed organization of gut bacteria is revealed by microbiome imaging technology

October 10, 2017, Marine Biological Laboratory
Bacteria in a model human gut microbiome established in a germ-free mouse. Each bacterial species is lit up with a different colored probe, creating a map of the community's spatial organization. Credit: Jessica Mark Welch and Yuko Hasegawa, MBL

Disruptions in the microbiome of the human gut are correlated with several diseases, including obesity and cancer. Yet little is known about the spatial organization of the nearly 1,000 bacterial species in the human gut, which can influence how the species interact with each other and with their host.

In a new collaborative study, scientists from the Marine Biological Laboratory in Woods Hole, the Forsyth Institute, and Washington University in St. Louis established a simplified, model in germ-free mice and revealed its structure through imaging technologies developed at the MBL. The study is published this week in Proceedings of the National Academy of Sciences.

"We thought we would see clusters of bacteria, with some species congregating around food particles and others abundant in the of the gut, which separates the bacteria from host tissue," says MBL scientist Jessica Mark Welch, the lead author of the study. "Instead, we saw a mixed community, where each cell tended to be next to cells of a different species." The bacterial communities near the mucus layer and in the gut's interior (the lumen), where digested food is pushed through by muscular contractions, looked similar.

"The study suggests the host is mixing the microbes and preventing large clusters of single kinds of bacteria from forming," Mark Welch says. "The host does this by sloughing mucus and epithelial cells into the lumen, and by mechanically mixing the contents of the gut. It may be that this mixing creates an evolutionarily stable microbial community."

"No one has looked at a complex microbial community in the gut this way before," says senior author Gary Borisy, a senior research investigator at the Forsyth Institute in Cambridge, Mass. "If we truly want to understand the role of the microbiome, it is not enough to know just which microbes are present. We must also learn what they are doing, who they are talking to and why. Part of the answer to that problem is to figure out who is next to who and who is next to what."

Understanding the spatial structure of microbiomes is a young field that these researchers are pioneering through their novel imaging technology. What they saw in the model gut contrasts with their prior study of human dental plaque, where they discovered highly organized assemblages of bacterial .

"We don't entirely understand why microbiome organization is so different in the mouth and in the gut," Mark Welch says. "It may have to do with the rate of flow. In the mouth, if bacteria don't adhere to something - either to each other or the host—they end up in the stomach in a matter of seconds. In the gut, flow of contents happens on a timescale of hours rather than seconds."

Mark Welch and collaborators are currently exploring microbiome organization in a number of human and marine ecosystems, including the human tongue, the cuttlefish gut, the surface of kelp, and on marine plastic debris.

Their imaging technology gives the researchers the unique ability to simultaneously image and identify 15 or more microbial taxa, using a technique called Combinatorial Labeling and Spectral Imaging - Fluorescence in situ Hybridization (CLASI-FISH). The team's model gut microbiome contained 15 that are typically abundant in the human gut.

Explore further: Highly organized structures discovered in microbial communities

More information: Jessica L. Mark Welch et al, Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1711596114

Related Stories

Bacterial strain diversity in the gut

March 28, 2017

What drives bacterial strain diversity in the gut? Although there are a number of possible explanations, a recent opinion piece published in TRENDs in Microbiology by Dr Pauline Scanlan, a Royal Society – Science Foundation ...

Don't blame your genes for your toothache, twin study shows

September 13, 2017

For the first time, investigators have looked at the role that genes and the oral microbiome play in the formation of cavities and have found that your mother was right: The condition of your teeth depends on your dietary ...

No microbes? No problem for caterpillars

August 22, 2017

The microbiome seems ubiquitous: humans and many other species rely on billions of tiny organisms in their guts to aid in digestion, metabolism and other functions. Now, scientists at the University of Colorado Boulder are ...

Recommended for you

Houseplants could one day monitor home health

July 20, 2018

In a perspective published in the July 20 issue of Science, Neal Stewart and his University of Tennessee coauthors explore the future of houseplants as aesthetically pleasing and functional sirens of home health.

LC10 – the neuron that tracks fruit flies

July 20, 2018

Many animals rely on vision to detect, locate, and track moving objects. Male Drosophila fruit flies primarily use visual cues to stay close to a female and to direct their courtship song towards her. Scientists from the ...

Putting bacteria to work

July 20, 2018

The idea of bacteria as diverse, complex perceptive entities that can hunt prey in packs, remember past experiences and interact with the moods and perceptions of their human hosts sounds like the plot of some low-budget ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.