A protein that extends life of yeast cells

September 6, 2017, University of Basel
Baker’s yeast Saccharomyces cerevisiae. Credit: University of Basel/SNI/Nano Imaging Lab

To understand and control aging is the aspiration of many scientists. Researchers at the Biozentrum of the University of Basel have now discovered that the protein Gcn4 decreases protein synthesis and extends the life of yeast cells. Understanding how individual genes affect lifespan opens new ways to control the aging process and the occurrence of aging-related diseases. The results of this study have recently been published in Nature Communications.

For about one hundred years it has been known that nutrient restriction and moderate stress can significantly prolong life. The researchers led by Prof. Mihaela Zavolan and Prof. Anne Spang, both at the Biozentrum of the University of Basel, have discovered how the transcription factor Gcn4, a protein that regulates the expression of many genes, extends the life of baker's Saccharomyces cerevisiae. In various stress situations, the cells stimulate Gcn4 production which leads to reduced biosynthesis of new proteins and increased yeast lifespan.

Transcription factor represses protein synthesis

It has long been known that – also known as translation – plays an important role in aging. Inhibition of protein synthesis, caused for example by reduced nutrient intake, can have a positive effect on the life expectancy of diverse organisms such as yeast, flies, worms or fish. Reducing the ribosomes, the protein factories of the cell, can also considerably extend the lifespan of yeast cells.

What these cellular stresses have in common is that they activate the production of Gcn4. However, how this protein promotes longevity has remained unclear.

In their study, the team working with Zavolan exposed yeast cells to different stress conditions, measured their lifespan, protein synthesis rates and Gcn4 expression. "We observed that the level of the Gcn4 protein was positively correlated with the longevity of ," says Mihaela Zavolan, Professor of Computational and Systems Biology.

"However, we wanted to understand why. We have now shown for the first time that it is the transcriptional suppression of genes that are important for cellular protein synthesis by Gcn4 that seems to account for its lifespan extension effect. As the translation machinery is limiting, the energy-intensive production of new proteins is overall dampened." From the yeast cell's point of view, this is an advantage: This enables them to live about 40 percent longer than usual.

The transcription factor Gcn4 is conserved in over 50 different organisms, including mammals, and it likely play a significant role in the aging of these organisms as well.

Zavolan's group will now investigate whether the mammalian homolog similarly slows aging and extends lifespan by regulating genes in response to nutrients and stress.

Explore further: Researchers uncover details about how dietary restriction slows down aging

More information: Nitish Mittal et al. The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan, Nature Communications (2017). DOI: 10.1038/s41467-017-00539-y

Related Stories

Protein turnover could be clue to living longer

August 30, 2017

It may seem paradoxical, but studying what goes wrong in rare diseases can provide useful insights into normal health. Researchers probing the premature aging disorder Hutchinson-Gilford progeria have uncovered an errant ...

Nucleolus is a life expectancy predictor

August 31, 2017

Can a cell show its biological age? And is it possible to foresee an animal's lifespan? Scientists from the Max Planck Institute for Biology of Ageing in Cologne discovered a connection between the size of the nucleolus - ...

RNA lifespan determination during transcription

June 5, 2017

Control of RNA lifespan is vital for the proper functioning of our cells. Marc Bühler's group at the Friedrich Miescher Institute for Biomedical Research (FMI) has discovered a novel mechanism determining the fate of RNA ...

Researchers uncover protein-based 'cancer signature'

December 5, 2016

A research team at the University of Basel's Biozentrum has investigated the expression of ribosomal proteins in a wide range of human tissues including tumors and discovered a cancer type specific signature. As the researchers ...

Recommended for you

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Levitating objects with light

March 19, 2019

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects' surfaces.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.