New peptide hormone aids waterproof barrier formation in plant roots

February 14, 2017
Vascular plants have evolved a physical barrier that prevents passive apoplastic diffusion of ions and water across the endodermal cells that surround the vascular bundles. This hydrophobic barrier embedded within the walls of endodermal cells is called the Casparian strip. Credit: Nagoya University

Plant growth and development relies on the movement of mineral ions from the soil to the transport system of root cells (xylem tissue) and subsequent transfer to the shoot. Because this process usually occurs against a concentration gradient, passive diffusion is prevented and homeostasis ensured by the presence of a waterproof lignin-rich barrier known as the Casparian strip that surrounds xylem and phloem tissue in a ring. Several proteins were known to be necessary for Casparian strip formation, including the receptor kinase GSO1/SGN3.

Now, work at Nagoya University has identified peptide hormone ligands within the center of the root that bind the GSO1/SGN3 receptor and regulate Casparian strip assembly in response to developmental and environmental cues. The study was reported in Science.

Genes encoding the precursors of peptide hormones are present in multiple copies in plant genomes, and the pre-peptides carry a conserved domain. Armed with this knowledge, the researchers used a screening process to identify two peptides, which they named Casparian strip integrity factor (CIF)1 and CIF2, from a wider peptide family that were needed for complete Casparian strip formation in the roots of the model plant Arabidopsis. CIF1 and CIF2 expression was limited to the central section of the root (the stele) containing the xylem and phloem.

Knockdown of the genes encoding CIF1 and CIF2 resulted in a "leaky" barrier that allowed movement of an experimental dye into the xylem. This phenotype resembled that seen in plants with mutations in the gene encoding the GSO1/SGN3 receptor.

"Lignin autofluorescence and live-cell imaging revealed disruption of the barrier in the absence of the peptide ligands or receptor," corresponding author Yoshikatsu Matsubayashi says, "while the addition of synthetic CIF1 to the ligand mutant, but not the receptor mutant, restored barrier integrity as binding of the receptor–ligand encouraged lignin deposition." CIF peptides were also shown to be necessary for maintenance as well as formation of the Casparian strip.

The ligand mutant was more sensitive to high iron levels in the soil than wild-type, showing stunted growth and bronzing of the leaves which was overcome by the addition of synthetic CIF1. These growth defects likely reflect the high iron observed in the xylem sap of these mutants, indicative of barrier leakage.

"Interestingly, CIF1 and CIF2 gene expression was up-regulated by high iron levels, particularly under high acidity" Matsubayashi says. "This reveals an active strategy by higher plants to overcome adverse growth conditions."

Explore further: Switch for building barrier in roots

More information: Takuya Nakayama et al. A peptide hormone required for Casparian strip diffusion barrier formation inroots, Science (2017). DOI: 10.1126/science.aai9057

Related Stories

Switch for building barrier in roots

July 28, 2015

Researchers at the University of Tokyo and Aberdeen University have identified the master switch for formation of the Casparian strip, a special structure in the root that plays an important role in nutrient uptake.

Engineering plants for biofuels

November 26, 2012

With increasing demands for sustainable energy, being able to cost-efficiently produce biofuels from plant biomass is more important than ever. However, lignin and hemicelluloses present in certain plants mean that they cannot ...

Recommended for you

Mammal long thought extinct in Australia resurfaces

December 15, 2017

A crest-tailed mulgara, a small carnivorous marsupial known only from fossilised bone fragments and presumed extinct in NSW for more than century, has been discovered in Sturt National Park north-west of Tibooburra.

Finding a lethal parasite's vulnerabilities

December 15, 2017

An estimated 100 million people around the world are infected with Strongyloides stercoralis, a parasitic nematode, yet it's likely that many don't know it. The infection can persist for years, usually only causing mild symptoms. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.