The world's smallest terrorist: Virus hijacks protein machine and then kills the host

December 11, 2015 by Lisbeth Heilesen, Aarhus University
First author of the article, Heidi Gytz Olesen, who defended her doctoral thesis at Aarhus University in June 2015, is now a postdoc at McGill University in Montreal, Canada Credit: McGill University

A research team has established how a virus exploits one of its host's proteins when the virus is about to replicate its genetic material during an infection. The discovery may potentially form the basis for the development of new methods for treating viral infections.

Bacteriophages are viruses that infect and kill bacteria. The name originates from the Greek 'phagos' which means 'to devour'. Bacteriophages were discovered 100 years ago because of their ability to replicate in a pathogenic bacterium, kill it and thereby cure the patient. As a small spaceship landing on the moon, the microscopic particles land on the surface of the bacteria where they inject their deadly .

In fact, virus is nothing but small protein capsules enclosing the genetic material. The virus cannot replicate without a host cell, which it hijacks for its survival. During an infection, it utilises its host cell's metabolism to make lots of copies of the virus, which are subsequently released, and infect new host cells while the host cell dies.

An international team of researchers from Denmark and Russia used a series of biochemical and structural biology techniques to investigate how the Qβ bacteriophage, which infects the common coli bacteria, utilises several of its host cell's proteins while replicating its genetic material.

Immediately after infection, Qβ releases its genetic material into the host cell, where it is used as a template for the production of viral proteins. Qβ takes over the host cell's protein machine to synthesise its envelope proteins, as well as a virus-specific RNA polymerase, called a replicase. The task of the replicase is to replicate the virus' genetic material, whereas the host cell's genetic material is not to be recognised and copied. The replicase cannot cope with this task on its own, so it hijacks three 'helpers' from the host's own proteins namely the ribosomal protein S1, EF-Tu and EF-Ts, which all usually play important roles for the host cell's .

In a recently published work, the researchers have shown how ribosomal protein S1 plays a crucial role when the viral Qβ genetic material is to be distinguished from the genetic material of the coli bacteria prior to the replication process. Together, the replicase and S1 form a surface to which the viral genetic material is likely to bind during the recognition process. If this surface is mutated on the replicase, it loses its ability to accurately recognise the virus genome, which has fatal consequences for the virus, which can no longer replicate.

In the future, these findings may form the basis for the development of new methods for treating , as the majority of all virus faces a similar challenge, namely to have to selectively replicate its own genetic material in competition with the genetic material of the . If this strategy fails, the will lose its ability to spread to new host cells and the infection will then be stopped.

The results have been published in the internationally recognised journal Nucleic Acids Research.

Explore further: Human genomic pathways to bronchitis virus therapy

More information: Nucleic Acids Research, … kv1212.full.pdf+html

Related Stories

Human genomic pathways to bronchitis virus therapy

November 18, 2015

Viral replication and spread throughout a host organism employs many proteins, but the process is not very well understood. Scientists at A*STAR have led a collaborative study to learn which host factors play a key role in ...

Trick that aids viral infection is identified

January 30, 2014

Scientists have identified a way some viruses protect themselves from the immune system's efforts to stop infections, a finding that may make new approaches to treating viral infections possible.

Researchers find proteins that shut down HIV-1

September 30, 2015

A pair of studies by researchers at the University of Massachusetts Medical School, the University of Trento in Italy, and the University of Geneva in Switzerland, point to a promising new anti-retroviral strategy for combating ...

Recommended for you

A new DNA editing toolkit for the alga Nannochloropsis

May 22, 2018

Eric Poliner and a team of MSU scientists in the Farre and Benning labs have released a new genetic engineering toolkit for the alga Nannochloropsis. The alga is of interest for the production of biofuels and other oil-based ...

Humans account for little next to plants, worms, bugs

May 21, 2018

When you weigh all life on Earth, billions of humans don't amount to much compared to trees, earthworms or even viruses. But we really know how to throw what little weight we have around, according to a first-of-its-kind ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.