Aperiodic crystals and beyond

June 17, 2015, International Union of Crystallography
A building at Melbourne's Federation Square features a pinwheel tiling façade. Credit: Uwe Grimm

Once a contradiction in terms, aperiodic crystals show instead that "long-range order" has never been defined. Whatever it means, decades of intense research have shown it to be more complex and surprising than anyone suspected [Senechal (2015). Acta Cryst. B71, 250-251; doi: 10.1107/S2052520615009907]

The human brain is very skilled at detecting patterns and recognising order in a structure, and ordered structures permeate cultural achievements of human civilisations, be it in the arts, architecture or music. The ability to detect and describe patterns is also at the basis of all scientific enquiry.

Crystals are paradigms of ordered structures. While order was once seen as synonymous with lattice periodic arrangements, the discoveries of incommensurate crystals and quasicrystals has led to a more general perception of crystalline order, encompassing both periodic and aperiodic crystals. The current definition of crystals rest on their essentially point-like .

Considering a number of recently investigated model systems, with particular emphasis on non-crystalline ordered structures, the limits of the current definition are explored in a paper [Grimm (2015). Acta Cryst. B71, 258-274; doi:10.1107/S2052520615008409].

The current definition of a crystal is based on the currently known catalogue of periodic and aperiodic crystals. Scientists currently do not know of any materials that have aperiodically ordered structures beyond incommensurate crystals and quasicrystals. The definition of a crystal also reflects the lack of understanding of what constitutes order in matter, and in this sense should be seen as a working definition that may well need to be revised in the future. In crystallography, order is linked to diffraction, which makes sense because diffraction is the method of choice to experimentally determine the structure of a solid. Grimm demonstrates that there are ordered structures which are not captured by the current definition, either because their pure point diffraction fails to be finitely generated, or because they do not have any non-trivial point component in their diffraction.

While we do not know whether such structures are realistic in nature, it should become possible to manufacture materials with purpose-design structure and properties. In this sense, these are structures that are relevant and should be considered to be within the realm of crystallography.

Explore further: Framework materials yield to pressure

Related Stories

Framework materials yield to pressure

June 11, 2015

Pressure is a powerful thermodynamic variable that enables the structure, bonding and reactivity of matter to be altered. In materials science it has become an indispensable research tool in the quest for novel functional ...

A greasy way to take better protein snapshots

November 10, 2014

Thanks to research performed at RIKEN's SACLA X-ray free electron laser facility in Japan, the dream of analyzing the structure of large, hard-to-crystallize proteins and other bio molecules has come one step closer to reality. ...

Recommended for you

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.