Study yields first snapshots of water splitting in photosynthesis

July 9, 2014, Arizona State University
The photosystem II cycle has four steps. There is a large conformation change between status S1 and status S3, as shown by the new inverstigations. Credit: Shibom Basu/Arizona State University

An international team, led by Arizona State University scientists, has published today in Nature a groundbreaking study that shows the first snapshots of photosynthesis in action as it splits water into protons, electrons and oxygen, the process that maintains Earth's oxygen atmosphere.

"This study is the first step towards our ultimate goal of unraveling the secrets of water splitting and obtaining molecular movies of biomolecules," said Petra Fromme, professor of chemistry and biochemistry at ASU. Fromme is the senior author and leader of the international team, which reported their work in "Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser," in the July 9 on-line issue of Nature.

Photosynthesis is one of the fundamental processes of life on Earth. The early Earth contained no oxygen and was converted to the oxygen-rich atmosphere we have today 2.5 billion years ago by the "invention" of the water splitting process in Photosystem II (PSII). All higher life on Earth depends on this process for its energy needs and PSII produces the oxygen we breathe, which ultimately keeps us alive.

The revealing of the mechanism of this water splitting process is essential for the development of artificial systems that mimic and surpass the efficiency of natural systems. The development of an "artificial leaf" is one of the major goals of the ASU Center for Bio-Inspired Solar Fuel Production, which was the main supporter of this study.

"A crucial problem facing our Center for Bio-Inspired Fuel Production (Bisfuel) at ASU and similar research groups around the world is discovering an efficient, inexpensive catalyst for oxidizing water to oxygen gas, hydrogen ions and electrons," said ASU Regents' Professor and Center Director Devens Gust. "Photosynthetic organisms already know how to do this, and we need to know the details of how carries out the process using abundant manganese and calcium.

"The research by Fromme and coworkers gives us, for the very first time, a look at how the catalyst changes its structure while it is working," Gust added. "Once the mechanism of photosynthetic water oxidation is understood, chemists can begin to design artificial photosynthetic catalysts that will allow them to produce useful fuels using sunlight."

In photosynthesis, oxygen is produced at a special metal site containing four manganese atoms and one calcium atom connected together as a metal cluster. This oxygen-evolving cluster is bound to the protein PSII that catalyzes the light driven process of water splitting. It requires four light flashes to extract one molecule of oxygen from two water molecules bound to the metal cluster.

Fromme states that there are two major drawbacks to obtaining structural and dynamical information on this process by traditional X-ray crystallography. First, the pictures one can obtain with standard structural determination methods are static. Second, the quality of the structural information is adversely affected by X ray damage.

"The trick is to use the world's most powerful X-ray laser, named LCLS located at the Department of Energy's SLAC National Accelerator Laboratory," said Fromme. "Extremely fast femtosecond (10-15 second) laser pulses record snapshots of the PSII crystals before they explode in the X-ray beam, a principle called 'diffraction before destruction.'"

In this way, snapshots of the process of water splitting are obtained damage free. The ultimate goal of the work is to record molecular movies of water splitting.

The team performed the time-resolved experiments on Photosystem II nanocrystals, which are so small that you can hardly see them even under a microscope. The crystals are hit with two green laser flashes before the structural changes are elucidated by the femtosecond X-ray pulses.

The researchers discovered large structural changes of the protein and the metal cluster that catalyzes the reaction. The cluster significantly elongates, thereby making room for a water molecule to move in.

"This is a major step toward the goal of making a movie of the molecular machine responsible for photosynthesis, the process by which plants make the oxygen we breathe, from sunlight and water," explained John Spence, ASU Regents' Professor of physics, team member and scientific leader of the National Science Foundation funded BioXFEL Science and Technology Center, which develops methods for biology with free electron lasers.

ASU recently made a large commitment to the groundbreaking work of the femtosecond crystallography team by planning to establish a new Center for Applied Structural Discovery at the Biodesign Institute at ASU. The center will be led by Petra Fromme.

Student role in research

An interdisciplinary team of eight ASU faculty members from the Department of Chemistry and Biochemistry (Petra Fromme, Alexandra Ros, Tom Moore and Anna Moore) and the Department of Physics (John Spence, Uwe Weierstall, Kevin Schmidt and Bruce Doak) worked together with national and international collaborators on this project. The results were made possible by the excellent work of current ASU graduate students Christopher Kupitz, Shibom Basu, Daniel James, Dingjie Wang, Chelsie Conrad, Shatabdi Roy Chowdhury, Jay-How Yang and ASU doctoral graduates and post-docs Kimberley Rendek, Mark Hunter, Jesse Bergkamp, Tzu-Chiao Chao and Richard Kirian.

Two undergraduate students Danielle Cobb and Brenda Reeder supported the team and gained extensive research experience by working hand in hand with graduate students, researchers and faculty at the free electron laser at Stanford. Four ASU senior scientists and postdoctoral researchers (Ingo Grotjohann, Nadia Zatsepin, Haiguang Liu and Raimund Fromme) supported the faculty in the design, planning and execution of the experiments, and were instrumental in evaluation of the data.

The first authorship of the paper is jointly held by the ASU graduate students Christopher Kupitz, who's dissertation is based on the development of new techniques for the growth and biophysical characterization of nanocrystals; and Shibom Basu, who devoted three years of his doctoral work to the development of the data evaluation methods.

"It is so exciting to be a part of this groundbreaking research and to have the opportunity to participate in this incredible international collaboration," said Kupitz, who will graduate this summer with a Ph.D. in biochemistry. "I joined the project because it fascinates me to work at the LCLS accelerator on this important biological project."

"The most exciting aspect of the work on Photosystem II is the prospect of making molecular movies to witness the process through time-resolved crystallography," added Basu.

National and international collaborators on the project include the team of Henry Chapman at DESY in Hamburg, Germany, who with the ASU team and researchers at the MPI in Heidelberg pioneered the new method of serial femtosecond crystallography. Other collaborators included a team led by Matthias Frank, an expert on laser spectroscopy and time-resolved studies with FELs at Lawrence Livermore National Laboratory, and the team of Yulia Pushkar at Purdue University, who supported the work with characterization of the crystals by electron paramagnetic resonance.

"We're tantalizingly close," said Chapman of the Center for Free-Electron Laser Science at DESY and a pioneer in X-ray free laser studies of crystallized proteins. "I think this shows that we really are on the right track and it will work."

Explore further: X-ray laser sees photosynthesis in action

More information: Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser, Nature, DOI: 10.1038/nature13453

Related Stories

X-ray laser sees photosynthesis in action

February 14, 2013

Opening a new window on the way plants generate the oxygen we breathe, researchers used an X-ray laser at the Department of Energy's (DOE) SLAC National Accelerator Laboratory to simultaneously look at the structure and chemical ...

Artificial leaf jumps developmental hurdle

February 18, 2014

In a recent early online edition of Nature Chemistry, ASU scientists, along with colleagues at Argonne National Laboratory, have reported advances toward perfecting a functional artificial leaf.

Insights from nature for more efficient water splitting

June 30, 2014

Water splitting is one of the critical reactions that sustain life on earth, and could be a key to the creation of future fuels. It is a key in the process of photosynthesis, through which plants produce glucose and oxygen ...

Experiment reaches biology milestone with hard X-ray laser

February 2, 2011

Unraveling the molecular basis of life is an age-old quest of humanity. A breakthrough towards this goal was reported in a pair of studies published Feb. 3 in the scientific journal Nature, detailing a new method developed ...

Recommended for you

Targeting 'hidden pocket' for treatment of stroke and seizure

January 19, 2019

The ideal drug is one that only affects the exact cells and neurons it is designed to treat, without unwanted side effects. This concept is especially important when treating the delicate and complex human brain. Now, scientists ...

Using bacteria to create a water filter that kills bacteria

January 18, 2019

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy ...

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

Hand-knitted molecules

January 18, 2019

Molecules are usually formed in reaction vessels or laboratory flasks. An Empa research team has now succeeded in producing molecules between two microscopically small, movable gold tips – in a sense as a "hand-knitted" ...

3-D culturing hepatocytes on a liver-on-a-chip device

January 17, 2019

Liver-on-a-chip cell culture devices are attractive biomimetic models in drug discovery, toxicology and tissue engineering research. To maintain specific liver cell functions on a chip in the lab, adequate cell types and ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

EyeNStein
5 / 5 (2) Jul 10, 2014
Doesn't "verkle" have any idea how reactive free oxygen is?
Where does he think it keeps coming (or came) from?
alfie_null
5 / 5 (1) Jul 10, 2014
What scientific junk. No scientific data on the early earth that supposedly contained no oxygen. It is a fairy tale. No proof at all about this wonderful "invention" either.

Get back to real science.

Your definition of proof being only stuff that doesn't threaten your beliefs?

Or, is it possible you are witnessing? Well then, be forthright about it! No sense hiding it under a bushel. St. Peter will give you a gold star in his ledger. Hopefully you'll be banned from physorg. We'll all be happier - a win-win situation.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.