Researchers develop thin film semiconductor that will drive production of next-generation displays

Oct 22, 2013
Photograph of a prototype of an oxide transistor and schematic diagram of the device structure.

Researchers at the National Institute for Materials Science have developed a pixel switching semiconductor, which will be the key to driving next-generation displays, by using an oxide film with a new elemental composition.

A flat panel display is an important interface in modern information society, which displays the electronic bit information used in machines in a human-recognizable form. Conventionally, amorphous silicon thin and polysilicon thin films had been used to make field-effect transistors to be used as pixel switches for TVs and smartphones, but there have been strong calls for the development of high-performance semiconductor films with higher definition or higher speed. At present, indium gallium zinc (IGZO) transistors are potential oxide semiconductors with high field-effect mobility. However, it is generally difficult to adjust the manufacturing conditions for stably and efficiently producing high-performance oxide semiconductors, and this is presenting a major challenge in actual production.

Therefore, materials that can adapt to broader manufacturing conditions are hoped to be developed for thin-film formation.

We added an infinitesimal amount of metal oxide (titanium oxide, tungsten oxide, silicon oxide, etc.) to , and found a factor that decides the film deposition conditions for a thin film to behave as a semiconductor, for the first time in the world.

When an contains metal with low bond dissociation energy, the thin film absorbs or desorbs oxygen easily and the conductivity of the film changes. For example, zinc has very low bond dissociation energy, so a thin film using zinc absorbs or desorbs oxygen easily when heated or cooled. This finding suggests that the manufacturing conditions for oxide semiconductors can be controlled by focusing on the bond dissociation energy. In fact, we confirmed that film deposition conditions can be broadened by adding with high bond dissociation energy to indium oxide. We also confirmed stabilization of thin-film conductivity in post-deposition heat treatment.

The research results are expected to be effective not only for reducing the power consumption of displays which consume about half of the power in rapidly diffusing smartphones, but also for achieving higher frequencies to realize higher-definition TVs. Moreover, the thin film developed in this research contributes to conserving precious resources by not using zinc, which is a trace element of concern, or high-cost gallium which is used in large quantities for galvanized steel sheets or as a rubber vulcanizing agent, while it also enables the manufacture of displays not affected by wild fluctuations in raw material prices.

The research results will be published in the online edition of the U.S. applied physics journal, Applied Physics Letters, in the near future.

Explore further: Shining a little light changes metal into semiconductor

Related Stories

Promising new alloy for resistive switching memory

Sep 20, 2013

Memory based on electrically-induced "resistive switching" effects have generated a great deal of interest among engineers searching for faster and smaller devices because resistive switching would allow ...

Recommended for you

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

Probing metal solidification nondestructively

Apr 14, 2014

(Phys.org) —Los Alamos researchers and collaborators have used nondestructive imaging techniques to study the solidification of metal alloy samples. The team used complementary methods of proton radiography ...

Glasses strong as steel: A fast way to find the best

Apr 13, 2014

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

User comments : 0

More news stories

Researchers see hospitalization records as additional tool

Comparing hospitalization records with data reported to local boards of health presents a more accurate way to monitor how well communities track disease outbreaks, according to a paper published April 16 in the journal PLOS ON ...

Ebola virus in Africa outbreak is a new strain

Scientists say that the Ebola (ee-BOH'-lah) virus that has killed scores of people this year in Guinea (GIH'-nee) is a new strain. That means it did not spread there from outbreaks in some other African nations.