From ocean to land: The fishy origins of our hips

May 14, 2013
Researchers compared the hips of Axolotls (pictured) with Australian Lung Fish. Credit: ThinkStock

New research has revealed that the evolution of the complex, weight-bearing hips of walking animals from the basic hips of fish was a much simpler process than previously thought.

, or four-legged animals, first stepped onto land about 395 million years ago. This significant change was made possible by strong hipbones and a connection through the spine via an ilium - features that were not present in the ancestors of tetrapods.

In a study published in the journal Evolution and Development, Dr Catherine Boisvert of the Australian Institute at Monash University, MacQuarie University's Professor Jean Joss and Professor Per Ahlberg of Uppsala University examined the hip structures of some of human's closest fish cousins.

They found the differences between us and them are not as great as they appear - most of the key elements necessary for the transformation to human hips were actually already present in our fish ancestors.

Dr Boisvert and her collaborators compared the hip development - bones and musculature - of the Australian lung fish and the Axolotl, commonly known as the Mexican Walking Fish. The results showed that, surprisingly, the transition from simple fish hip to complex weight-bearing hip could be done in a few evolutionary steps.

"Many of the muscles thought to be "new" in tetrapods evolved from muscles already present in lungfish. We also found evidence of a new, more simple path by which would have evolved," Dr Boisvert said.

The researchers found that the sitting bones would have evolved by the extension of the already existing pubis. The connection to the could have evolved from an illiac process already present in fish.

"The transition from ocean-dwelling to land-dwelling animals was a major event in the evolution of , including humans, and an altered hip was an essential enabling step," Dr Boisvert said.

"Our research shows that what initially appeared to be a large change in morphology could be done with relatively few developmental steps."

Explore further: Fossil footprints give land vertebrates a much longer history

Related Stories

Lungfish provides insight to life on land

October 4, 2011

A study into the muscle development of several different fish has given insights into the genetic leap that set the scene for the evolution of hind legs in terrestrial animals. This innovation gave rise to the tetrapods—four-legged ...

Human-like spine morphology found in aquatic eel fossil

May 23, 2012

For decades, scientists believed that a spine with multiple segments was an exclusive feature of land-dwelling animals. But the discovery of the same anatomical feature in a 345-million-year-old eel suggests that this complex ...

Recommended for you

Most EU nations seek to bar GM crops

October 4, 2015

Nineteen of the 28 EU member states have applied to keep genetically modified crops out of all or part of their territory, the bloc's executive arm said Sunday, the deadline for opting out of new European legislation on GM ...

Ancestral background can be determined by fingerprints

September 28, 2015

A proof-of-concept study finds that it is possible to identify an individual's ancestral background based on his or her fingerprint characteristics – a discovery with significant applications for law enforcement and anthropological ...

Trade in invasive plants is blossoming

October 3, 2015

Every day, hundreds of different plant species—many of them listed as invasive—are traded online worldwide on auction platforms. This exacerbates the problem of uncontrollable biological invasions.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.