'Gordon,' a supercomputer with unique flash memory, helps battle autism

Mar 26, 2013
NSF-funded superhero supercomputer helps battle autism
Gordon, a completely new kind of supercomputer that uses massive amounts of flash memory, helps researchers study transcription factors that can be targeted for treatment of mental disorders. Credit: UC San Diego Publications/Erik Jepsen

When it officially came online at the San Diego Supercomputer Center (SDSC) in early January 2012, Gordon was instantly impressive. In one demonstration, it sustained more than 35 million input/output operations per second—then, a world record.

Input/output operations are an important measure for data intensive computing, indicating the ability of a to quickly communicate between an , such as a computer, and the outside world. Input/output operations specify how fast a system can retrieve randomly organized data common in large datasets and process it through data mining applications.

The supercomputer's record-breaking feat wasn't a surprise; after all, Gordon is named after a comic strip superhero, Flash Gordon.

Gordon's new and unique architecture employs massive amounts of the type of flash memory common in cell phones and laptops—hence its name. The system is used by scientists whose research requires the mining, searching and/or creating of large databases for immediate or later use, including mapping genomes for applications in personalized medicine and examining computer automation of stock trading by investment firms on Wall Street.

Commissioned by the National Science Foundation (NSF) in 2009 for $20 million, Gordon is part of NSF's Extreme Science and Engineering Discovery Environment, or XSEDE program, a nationwide partnership comprising 16 and high-end visualization and data analysis resources.

"Gordon is a unique machine in NSF's Advanced Cyberinfrastructure/XSEDE portfolio," said Barry Schneider, NSF program director for advanced cyberinfrastructure. "It was designed to handle scientific problems involving the manipulation of very large data. It is differentiated from most other resources we support in having a large solid-state memory, 4 GB per core, and the capability of simulating a very large shared with software."

Last month, a team of researchers from SDSC, the United States and the Institute Pasteur in France reported in the journal Genes, Brain and Behavior that they used Gordon to devise a novel way to describe a time-dependent gene-expression process in the brain that can be used to guide the development of treatments for mental disorders such as autism-spectrum disorders and schizophrenia.

The researchers identified the hierarchical tree of coherent gene groups and transcription-factor networks that determine the patterns of genes expressed during brain development. They found that some "master transcription factors" at the top level of the hierarchy regulated the expression of a significant number of gene groups.

The scientists' findings can be used for selection of transcription factors that could be targeted in the treatment of specific mental disorders.

"We live in the unique time when huge amounts of data related to genes, DNA, RNA, proteins, and other biological objects have been extracted and stored," said lead author Igor Tsigelny, a research scientist with SDSC as well as with UC San Diego's Moores Cancer Center and its Department of Neurosciences.

"I can compare this time to a situation when the iron ore would be extracted from the soil and stored as piles on the ground. All we need is to transform the data to knowledge, as ore to steel. Only the supercomputers and people who know what to do with them will make such a transformation possible," he said.

This research is one of a number of high-value projects being conducted at SDSC with Gordon.

Explore further: MIT groups develop smartphone system THAW that allows for direct interaction between devices

More information: www.sdsc.edu/supercomputing/gordon/

add to favorites email to friend print save as pdf

Related Stories

SDSC's 'Gordon' supercomputer: Ready for researchers

Mar 06, 2012

Accurately predicting severe storms, or what Wall Street’s markets will do next, may become just a bit easier in coming months as Gordon, a unique supercomputer at the San Diego Supercomputer Center (SDSC) ...

SDSC supercharges its 'Data Oasis' storage system

Jun 06, 2012

The San Diego Supercomputer Center (SDSC) at the University of California, San Diego has completed the deployment of its Lustre-based Data Oasis parallel file system, with four petabytes (PB) of capacity and ...

Recommended for you

Wireless sensor transmits tumor pressure

5 hours ago

The interstitial pressure inside a tumor is often remarkably high compared to normal tissues and is thought to impede the delivery of chemotherapeutic agents as well as decrease the effectiveness of radiation ...

Tim Cook puts personal touch on iPhone 6 launch

6 hours ago

Apple chief Tim Cook personally kicked off sales of the iPhone 6, joining in "selfies" and shaking hands with customers Friday outside the company's store near his Silicon Valley home.

Team improves solar-cell efficiency

21 hours ago

New light has been shed on solar power generation using devices made with polymers, thanks to a collaboration between scientists in the University of Chicago's chemistry department, the Institute for Molecular ...

Calif. teachers fund to boost clean energy bets

21 hours ago

The California State Teachers' Retirement System says it plans to increase its investments in clean energy and technology to $3.7 billion, from $1.4 billion, over the next five years.

User comments : 0