Mussel goo inspires blood vessel glue

December 11, 2012

(Phys.org)—A University of British Columbia researcher has helped create a gel – based on the mussel's knack for clinging to rocks, piers and boat hulls – that can be painted onto the walls of blood vessels and stay put, forming a protective barrier with potentially life-saving implications.

Co-invented by Assistant Professor Christian Kastrup while a postdoctoral student at the Massachusetts Institute of Technology, the gel is similar to the amino acid that enables mussels to resist the power of churning water. The variant that Kastrup and his collaborators created, described in the current issue of the online journal PNAS Early Edition, can withstand the flow of blood through .

The gel's "sheer strength" could shore up weakened at risk of rupturing – much like the way putty can fill in dents in a wall, says Kastrup, a member of the Department of Biochemistry and Molecular Biology and the Michael Smith Laboratories.

By forming a stable barrier between blood and the vessel walls, the gel could also prevent the inflammation that typically occurs when a stent is inserted to widen a narrowed artery or vein; that inflammation often counteracts the opening of the vessel that the stent was intended to achieve.

The widest potential application would be preventing the rupture of blood vessel plaque. When a plaque ruptures, the resulting clot can block blood flow to the heart (triggering a heart attack) or the brain (triggering a stroke). Mice treated with a combination of the gel and an anti-inflammatory steroid had more stable plaque than a control group of untreated mice.

"By mimicking the 's ability to cling to objects, we created a substance that stays in place in a very dynamic environment with high ," says Kastrup, a member of UBC's Centre for Blood Research.

Explore further: High Blood Pressure In Older Adults Traced To Gene's Effects In Blood Vessels

Related Stories

Inflammation worsens danger due to atherosclerosis

January 22, 2009

Current research suggests that inflammation increases the risk of plaque rupture in atherosclerosis. The related report by Ovchinnikova et al, "T cell activation leads to reduced collagen maturation in atherosclerotic plaques ...

Extending the effective lifetime of stents

October 6, 2011

Implanted stents can reopen obstructed arteries, but regrowth of cells into the vessel wall can entail restenosis. Research at LMU now shows that an antimicrobial peptide inhibits restenosis and promotes vascular healing. ...

Recommended for you

Force triggers gene expression by stretching chromatin

August 26, 2016

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China ...

3-D printed structures that 'remember' their shapes

August 26, 2016

Engineers from MIT and Singapore University of Technology and Design (SUTD) are using light to print three-dimensional structures that "remember" their original shapes. Even after being stretched, twisted, and bent at extreme ...

New method developed for producing some metals

August 25, 2016

The MIT researchers were trying to develop a new battery, but it didn't work out that way. Instead, thanks to an unexpected finding in their lab tests, what they discovered was a whole new way of producing the metal antimony—and ...

New electrical energy storage material shows its power

August 24, 2016

A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.