Mussel goo inspires blood vessel glue

December 11, 2012

(Phys.org)—A University of British Columbia researcher has helped create a gel – based on the mussel's knack for clinging to rocks, piers and boat hulls – that can be painted onto the walls of blood vessels and stay put, forming a protective barrier with potentially life-saving implications.

Co-invented by Assistant Professor Christian Kastrup while a postdoctoral student at the Massachusetts Institute of Technology, the gel is similar to the amino acid that enables mussels to resist the power of churning water. The variant that Kastrup and his collaborators created, described in the current issue of the online journal PNAS Early Edition, can withstand the flow of blood through .

The gel's "sheer strength" could shore up weakened at risk of rupturing – much like the way putty can fill in dents in a wall, says Kastrup, a member of the Department of Biochemistry and Molecular Biology and the Michael Smith Laboratories.

By forming a stable barrier between blood and the vessel walls, the gel could also prevent the inflammation that typically occurs when a stent is inserted to widen a narrowed artery or vein; that inflammation often counteracts the opening of the vessel that the stent was intended to achieve.

The widest potential application would be preventing the rupture of blood vessel plaque. When a plaque ruptures, the resulting clot can block blood flow to the heart (triggering a heart attack) or the brain (triggering a stroke). Mice treated with a combination of the gel and an anti-inflammatory steroid had more stable plaque than a control group of untreated mice.

"By mimicking the 's ability to cling to objects, we created a substance that stays in place in a very dynamic environment with high ," says Kastrup, a member of UBC's Centre for Blood Research.

Explore further: High Blood Pressure In Older Adults Traced To Gene's Effects In Blood Vessels

Related Stories

Inflammation worsens danger due to atherosclerosis

January 22, 2009

Current research suggests that inflammation increases the risk of plaque rupture in atherosclerosis. The related report by Ovchinnikova et al, "T cell activation leads to reduced collagen maturation in atherosclerotic plaques ...

Recommended for you

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.