A radical solution for environmental pollution

June 2, 2005

Nature abounds with examples of bacteria that can thrive in extreme situations—surviving on toxic chemicals, for instance. In a paper published online in the Journal of the American Chemical Society (JACS) May 25, University of Michigan researchers show how some bugs manage to do that: by harnessing other potentially harmful chemicals known as free radicals to degrade the toxins they live on.

Such insights could lead to new ways of engineering bacteria to clean up environmental messes, said associate professor of chemistry E. Neil Marsh, who did the work with postdoctoral fellow Chunhua Qiao.

Free radicals—highly reactive chemical species that have been implicated in aging, diseases such as Alzheimer's and cancer, and even destruction of the ozone layer—aren't all bad, Marsh said. Many essential chemical reactions occurring in living organisms involve enzymes that use radicals. In the work described in the JACS paper, Marsh and Qiao investigated the chemical reactions that allow the bacterium Thauera aromatica to live on toluene as its sole source of carbon and energy.

"Toluene is a by-product of oil refining, so there's quite a lot of environmental contamination with this and related hydrocarbons, from refineries or chemical plants," Marsh said. "Because of their molecular structure, these compounds are very difficult to degrade, which is why they're pollution hazards." Toluene is especially worrisome because it's more soluble in water than most organic compounds are, which means that it can contaminate groundwater.

Bacteria such as T. aromatica hold promise for use in cleaning up environmental pollutants because they not only can break down hazardous chemicals, but they can also do it underground, in oxygen-scarce environments—just the sort of places where toluene could be causing problems.

Marsh would like to transfer T. aromatica's toluene-degrading abilities to other bacteria that are more easily cultured and more tolerant of various environmental conditions. He'd also like to coax T. aromatica into neutralizing other kinds of pollutants, but the first step is understanding exactly how the bug breaks down toluene.

"The challenge is that the chemical reactions these bacteria use are very unusual—not the standard chemical reactions that chemists usually think about," said Marsh. "It turns out that the solution to metabolizing these very inert compounds is to harness the reactive chemistry of free radicals. To a chemist it's an elegant solution to a difficult problem—even if we still don't really understand how the enzymes that catalyze these reactions work, for everyone else it could mean less pollution."

Links: JACS paper

Source: University of Michigan

Explore further: Northern coastal marshes more vulnerable to nutrient pollution

Related Stories

Bacterial boost for clean energy

March 27, 2013

(Phys.org) —Bacteria are often associated with their disease-causing capacity or alternatively, with their role as normal residents of the human body, where they perform duties essential to health.

New species of archaeon named after ASU professor

December 17, 2010

A recent manuscript published in The Archives of Microbiology documents the discovery of a hyperthermophilic archaeon in Yellowstone National Park. It is proposed that this archaeon be named in honor of professor Everett ...

Bubble of methane triggered rig blast

May 8, 2010

The deadly blowout of an oil rig in the Gulf of Mexico was triggered by a bubble of methane gas that escaped from the well and shot up the drill column, expanding quickly as it burst through several seals and barriers before ...

Recommended for you

'Expansion entropy': A new litmus test for chaos?

July 28, 2015

Can the flap of a butterfly's wings in Brazil set off a tornado in Texas? This intriguing hypothetical scenario, commonly called "the butterfly effect," has come to embody the popular conception of a chaotic system, in which ...

'Carbon sink' detected underneath world's deserts

July 28, 2015

The world's deserts may be storing some of the climate-changing carbon dioxide emitted by human activities, a new study suggests. Massive aquifers underneath deserts could hold more carbon than all the plants on land, according ...

Lobster-Eye imager detects soft X-ray emissions

July 28, 2015

Solar winds are known for powering dangerous space weather events near Earth, which, in turn, endangers space assets. So a large interdisciplinary group of researchers, led by the U.S. National Aeronautics and Space Administration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.