Physicists develop a method of detecting counterfeit whiskey using spectroscopy

November 2, 2011 by Bob Yirka, Phys.org report
Image: Wikipedia

(PhysOrg.com) -- Physicists Praveen Ashok, Bavishna Praveen, and K. Dholakia working together at the University of St Andrews in Scotland have developed a method for testing whiskey for authenticity using a crafted device that allows for measurements via spectroscopy. The results of their research have been published in the journal Optics Express.

While it has long been known that could be used to analyze the components of whiskey, or any liquid that allows light to pass though it for that matter, previous models have required a lengthy setup process by a technically savvy person. This new process, in contrast, can be conducted by virtually anyone at any location once the device is sold commercially.

The device is actually nothing more than a microfluidic chip made of (PDMS), a type of clear plastic that has had horizontal channels carved into it to allow the insertion of fiber cables and vertical channels for the input and output of tiny whiskey samples. The reason it has been set up this way is to prevent of alcohol while the sample is being tested.

Once set up the apparatus looks like a flat piece of clear plastic about a quarter inch thick with four channels in it, all leading to its center. The channel or hole on top is where the whisky goes in. One channel leads to one side that is connected to a suction device for pulling the whisky through the channels. Two other channels leading to two other edges respectively are for holding fiber optic cables. One going in, the other out to the spectrometer.

To run the device, a drop of whiskey is dropped into the hole on top. It is then shot with a laser via the and then read by spectrometer on the other end of the output . The whiskey output channel is used for pulling the whisky back out so that the channels can be cleaned and the device reused.

The spectrometer performs two types of analysis. The first is to test for . For whisky to be considered authentic it must be at least 40% alcohol.

The second analysis measures other organic compounds found in the whiskey samples, such as esters and aldehydes, which are collectively called congeners. Also in the whiskey are tiny bits of wood from the casks that held the whiskey as it matured. The combination of all these substances, despite the fact that they amount to less than 1% of the volume of whiskey, are what make each unique, both visually, and in taste. By comparing the amounts of each in the sample, the is able to indentify whether it is authentic, as well as its brand, age and in some cases, which cask it came from.

Explore further: How to tell real whiskey from fake -- faster

More information: Near infrared spectroscopic analysis of single malt Scotch whisky on an optofluidic chip, Optics Express, Vol. 19, Issue 23, pp. 22982-22992 (2011) dx.doi.org/10.1364/OE.19.022982

Abstract
Standardization and quality monitoring of alcoholic beverages is an important issue in the liquor production industry. Various spectroscopic techniques have proved useful for tackling this problem. An ideal sensing device for alcoholic beverages should be able to detect the quality of alcohol with a small amount of sample at a low acquisition time using a portable and easy to use device. We propose the use of near infra-red spectroscopy on an optofluidic chip for quality monitoring of single malt Scotch whisky. This is chip upon which we have previously realized waveguide confined Raman spectroscopy. Analysis on this alignment-free, portable chip may be performed in only 2 seconds with a sample volume of only 20 µl. Using a partial least square (PLS) calibration, we demonstrate that the alcohol content in the beverage may be predicted to within a 1% prediction error. Principal component analysis (PCA) was employed for successful classification of whiskies based upon their age, type and cask. The prospect of implementing an optofluidic analogue of a conventional fiber based spectroscopic probe allows a rapid analysis of alcoholic beverages with dramatically reduced sample volumes.

Related Stories

Tiny spectrometer offers precision laser calibration

May 11, 2007

A tiny device for calibrating or stabilizing precision lasers has been designed and demonstrated at the National Institute of Standards and Technology. The prototype device could replace table-top-sized instruments used for ...

An optical traffic cop for rapid communication

May 3, 2010

It looks like a piece of gel that slips into the sole of your sneaker, but it's a new nano-based technology that can make computers and the Internet hundreds of times faster -- a communications technology "enabler" that may ...

Recommended for you

Solutions to water challenges reside at the interface

July 17, 2018

In response to rising water scarcity, leading Argonne National Laboratory researcher Seth Darling describes the most advanced research innovations that could address global clean water accessibility. His comprehensive paper ...

Exploding waves from colliding dissipative pulses

July 17, 2018

The interaction of traveling waves in dissipative systems, physical systems driven by energy dissipation, can yield unexpected and sometimes chaotic results. These waves, known as dissipative pulses (DSs), are driving experimental ...

New study could hold key to hack-proof systems

July 17, 2018

Major data breaches have made worldwide headlines of late but an international consortium of scientists—including a professor from Heriot-Watt—have developed a new technique that could result in hack-proof systems.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Hengine
not rated yet Nov 02, 2011
Vendicar - lol no

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.