Lessons from the tsunami: protect the coast and it will protect you

August 13, 2005

Coastal populations and ecosystems are more likely to bounce back from extreme coastal disasters by protecting local environments and building on local knowledge, according to a report published in Science.

And the aftermath of the Asian tsunami has given valuable insight into handling extreme coastal disasters - inevitable as the world’s coastal population is set to double by 2030 and global warming continues to exacerbate extreme weather conditions.

The research team from Australia, US, Sweden and UK, led by Dr Neil Adger of the University of East Anglia, is calling for action that builds on the existing resilience of coastal environments and communities when setting up disaster management policies to cope with cyclones, hurricanes, tsunamis and floods.

The Social-Ecological Resilience to Coastal Disasters report concludes that healthy ecosystems are much more likely to absorb the shock and provide protection from a coastal disaster than man-made structures such as sea walls or artificial reefs.

Globally 23 per cent of the world’s population (1.2 billion people) live within 100 km of the coast and this figure is likely to increase to 50 per cent in the next twenty five years as people flock to coastal cities – many these being Asian cities.

To compound this, many weather-related disasters are becoming more destructive and intense due to climate change.

The report is based on two case studies – the Asian tsunami in 2004 and the impact of severe storms in the Caribbean over the past twenty years.

The tsunami had less impact in areas where ecosystems were protected and local communities were aware of coastal hazards than those places where development went right up to the coastline.

Sand dunes, mangrove forests and coral reefs helped reduce the energy of tsunami waves in Sri Lanka by acting as natural barriers, the Stockholm Environment Institute discovered in a rapid assessment of the environmental impact of the tsunami.

In the Caribbean, the Cayman Islands have adapted to major hurricanes. The government took positive action and educated communities following two major hurricanes in 1988 and 1998 and were much more able to adapt, cope and recover from Hurricane Ivan in 2004.

Traditional farming systems which integrated coffee with maize in Honduras were much better at recovering from Hurricane Mitch in 1998 than farming systems which solely grew coffee.

Dr Adger, of the Tyndall Centre at UEA, argues that maintaining resilience is the key. New scientific insights from ecologists show that natural ecosystems such as coral reefs and coastal mangrove forests can adapt to change and recover from storms and floods and still provide services of protecting the coast and absorbing pollution. But once these ecosystems are put under pressure by coastal development, they may lose their resilience.

Similarly, if communities are more resilient they are going to be able to learn from past experience and to deal with disasters better and to recover quickly.

Dr Neil Adger co author of the report said: “If we protect our coastal environment, it will protect us in times of disaster. This now appears to be true for some areas of Asia affected by the tsunami. And it will certainly be true for coasts of the future.”

Source: University of East Anglia

Explore further: How U.S. chemical warfare in Vietnam unleashed an enduring disaster

Related Stories

After an earthquake, how does a tsunami happen?

September 11, 2017

Friday's earthquake off Mexico was the largest in that region in over a century, and will add pressure to a region already being battered by several other natural disasters.

Toll in Mexico quake rises to at least 32

September 8, 2017

Mexico was severely jolted overnight by its most powerful earthquake in a century, which killed at least 32 people as it struck the Pacific coast, officials said Friday.

Recommended for you

The birth of a new protein

October 20, 2017

A yeast protein that evolved from scratch can fold into a three-dimensional shape—contrary to the general understanding of young proteins—according to new research led by the University of Arizona.

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.