Mysteries of Earth's radiation belts uncovered by Van Allen Probes twin spacecraft

Dec 04, 2013
The twin Van Allen Probes were launched on August 30, 2012 into elliptical, near-equatorial orbits around the Earth. Remarkably, rather than seeing just the well-known two-belt structure, the mission found almost immediate evidence of the clear three-belt structure portrayed in green in this diagram. Image courtesy of Andy Kale, University of Alberta.

Just over a year since launch, NASA's Van Allen Probes mission continues to unravel longstanding mysteries of Earth's high-energy radiation belts that encircle our planet and pose hazards to orbiting satellites and astronauts.

Derived from measurements taken by a University of New Hampshire-led instrument on board the twin spacecraft, the latest discovery reveals that the high-energy particles populating the radiation belts can be accelerated to nearly the speed of light in conjunction with ultra-low frequency electromagnetic waves operating on a planetary scale.

This mode of action, as detailed in a paper recently published in the journal Nature Communications, is analogous to that of a cyclical particle accelerator like the Large Hadron Collider. However, in this case, the Earth's vast magnetic field, or magnetosphere, which contains the Van Allen belts, revs up drifting electrons to ever-higher speeds as they circle the planet from west to east.

The recent finding comes on the heels of a related discovery—also made by the UNH-led Energetic Particle, Composition, and Thermal Plasma (ECT) instrument suite—showing similar particle acceleration but on a microscopic rather than a planetary scale.

"The acceleration we first reported operates on the scale size of an electron's gyromotion—it is a really local process, maybe only a few hundred meters in size," notes Harlan Spence, director of the UNH Institute for the Study of Earth, Oceans, and Space, principal scientist for the ECT, and coauthor on the Nature Communications paper. "Now we're seeing this large-scale, global motion involving ultra low-frequency waves pulsing through Earth's magnetosphere and operating across vast distances up to hundreds of thousands of kilometers." And, Spence adds, in all likelihood both processes are occurring simultaneously to accelerate particles to relativistic speeds.

Understanding the complex dynamics of the will help scientists make better predictions of space weather conditions and, thus, offer better protections to orbiting satellites crucial to modern-day society.

Having twin spacecraft making simultaneous measurements in different regions of nearby space is a key part of the mission as it allows the scientists to look at data separated in both space and time.

"With the Van Allen Probes, I like to think there's no place for these particles to hide because each spacecraft is spinning and 'glimpses' the entire sky with its detector 'eyes', so we're essentially getting a 360-degree view in terms of direction, position, energy, and time," Spence says.

Adds Ian Mann of the University of Alberta and first author of the Nature Communications paper, "People have considered that this acceleration process might be present but we haven't been able to see it clearly until the Van Allen Probes."

What this provides is the ability to decipher actual changes in the surrounding region rather than encountering something that looks different but may simply be the result of a single-point measurement with a limited perspective.

With the discoveries, scientists are starting to unravel the different pieces of the puzzle for any particular particle event that changes the structure of the radiation belts. Ultimately they hope to be able to understand the dynamics well enough to actually predict how, collectively, all these different conditions working in tandem make the belts either move in or out, inflate, deflate, change energy, or lose or gain particles.

Says Spence, "What we hope for are those serendipitous occasions when nature has accentuated one process above all others, which allows the spacecraft to really see what's going on. We want to know how the whole system causes one phenomenon or process to dominate or have a lesser influence compared to another one, and we're gaining a much deeper understanding of that."

Explore further: Scientists explain the formation of unusual ring of radiation in space

More information: www.nature.com/ncomms/2013/131… full/ncomms3795.html

Related Stories

Van Allen Probes pinpoint driver of speeding electrons

Jul 25, 2013

Researchers believe they have solved a lingering mystery about how electrons within Earth's radiation belt can suddenly become energetic enough to kill orbiting satellites. Thanks to data gathered from an ...

Van Allen Probes reveal new dynamics of radiation belts

Dec 06, 2012

(Phys.org)—Just 96 days since their launch, NASA's twin Van Allen Probes have already provided new insights into the structure and behavior of the radiation belts that surround Earth, giving scientists ...

NASA's BARREL mission launches 20 balloons

May 21, 2013

(Phys.org) —In Antarctica in January, 2013 – the summer at the South Pole – scientists released 20 balloons, each eight stories tall, into the air to help answer an enduring space weather question: ...

Recommended for you

Mysteries of space dust revealed

12 hours ago

The first analysis of space dust collected by a special collector onboard NASA's Stardust mission and sent back to Earth for study in 2006 suggests the tiny specks open a door to studying the origins of the ...

A guide to the 2014 Neptune opposition season

17 hours ago

Never seen Neptune? Now is a good time to try, as the outermost ice giant world reaches opposition this weekend at 14:00 Universal Time (UT) or 10:00 AM EDT on Friday, August 29th. This means that the distant ...

Informing NASA's Asteroid Initiative: A citizen forum

Aug 28, 2014

In its history, the Earth has been repeatedly struck by asteroids, large chunks of rock from space that can cause considerable damage in a collision. Can we—or should we—try to protect Earth from potentially ...

Image: Rosetta's comet looms

Aug 28, 2014

Wow! Rosetta is getting ever-closer to its target comet by the day. This navigation camera shot from Aug. 23 shows that the spacecraft is so close to Comet 67P/Churyumov-Gerasimenko that it's difficult to ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Solon
not rated yet Dec 04, 2013
Fron: Van Allen Probes pinpoint driver of speeding electrons

"We don't know whether it is Chorus Waves or some other type of electromagnetic wave that's behind the electron acceleration we are seeing," said Reeves, "but the Van Allen Probes are also equipped with instruments that should help us figure that out as well."

Read more at: http://phys.org/n...html#jCp

Looks like those instruments did figure it out. Double-layers.

Megavolt Parallel Potentials Arising from Double-Layer Streams in the Earth's Outer Radiation Belt

"Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth's outer radiation belt."

http://prl.aps.or.../e235002
cantdrive85
1 / 5 (2) Dec 21, 2013
Looks like those instruments did figure it out. Double-layers.

Megavolt Parallel Potentials Arising from Double-Layer Streams in the Earth's Outer Radiation Belt

"Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth's outer radiation belt."

http://prl.aps.or.../e235002


This has huge implications, once again Alfven is correct. Alfven claimed the DL should be a described celestial object, with the correct observations we'll see they pervade the universe.
The fact these electric double layers exist further falsify standard ideal MHD models of plasma. Everyday passes with further support of the Electric Universe.