Harnessing the predictive power of virtual communities

January 30, 2012

Scientists have created a new algorithm to detect virtual communities, designed to match the needs of real-life social, biological or information networks detection better than with current attempts. The results of this study by Lovro Šubelj and his colleague Marko Bajec from the University of Ljubljana, Slovenia have just been published in European Physical Journal B.

Communities are defined as systems of nodes interacting through links. So-called classical communities are defined by their internal level of link density. By contrast, link-pattern communities – better suited to describe real-world phenomena – are characterised by internal patterns of similar connectedness between their nodes.

The authors have created a model, referred to as a propagation-based , that can extract both link-density and link-pattern communities without any prior knowledge of the number of communities, unlike previous attempts at community detection. They first validated their algorithm on several synthetic benchmark networks and with random networks. The researchers subsequently tested it on ten real-life networks including social (members of a karate club), information (peer-to-peer file sharing) and biological (protein-protein interactions of a yeast) networks. By this, it was found that the proposed algorithm detected the real-life communities more accurately than existing state-of-the-art algorithms.

They concluded that real-life networks appear to be composed of link-pattern communities that are interwoven and overlap with classical link-density communities. Further work could focus on creating a generic model to understand the conditions, such as the low level of clustering, for link-pattern communities to emerge, compared to link-density communities. The model could also help to explain why such link-pattern communities call the existing interpretation of small-world phenomena (six degrees of separation between nodes) into question.

Applications include the prediction of future friendships in online social networks, analysis of interactions in biological systems that are hard to observe otherwise, and detection of duplicated code in software systems.

Explore further: Stanford researchers focus on social networks to curb spread of disease

More information: Šubelj L., Bajec M. (2012), Ubiquitousness of link-density and link-pattern communities in real-world networks, European Physical Journal B (EPJ B) 85: 32, DOI: 10.1140/epjb/e2011-20448-7

Related Stories

Nurturing a seed of discovery

August 9, 2011

(PhysOrg.com) -- Network scientists at Northeastern University have collaborated with an interdisciplinary team of colleagues in cell biology and interactive data acquisition to create the first large-scale map of a plant’s ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Jan 30, 2012
I read through this article 3 times and am still confused. Are they saying that "friendships can be predicted"?

I think a bit more simplifying is in order.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.