Harnessing the predictive power of virtual communities

January 30, 2012

Scientists have created a new algorithm to detect virtual communities, designed to match the needs of real-life social, biological or information networks detection better than with current attempts. The results of this study by Lovro Šubelj and his colleague Marko Bajec from the University of Ljubljana, Slovenia have just been published in European Physical Journal B.

Communities are defined as systems of nodes interacting through links. So-called classical communities are defined by their internal level of link density. By contrast, link-pattern communities – better suited to describe real-world phenomena – are characterised by internal patterns of similar connectedness between their nodes.

The authors have created a model, referred to as a propagation-based , that can extract both link-density and link-pattern communities without any prior knowledge of the number of communities, unlike previous attempts at community detection. They first validated their algorithm on several synthetic benchmark networks and with random networks. The researchers subsequently tested it on ten real-life networks including social (members of a karate club), information (peer-to-peer file sharing) and biological (protein-protein interactions of a yeast) networks. By this, it was found that the proposed algorithm detected the real-life communities more accurately than existing state-of-the-art algorithms.

They concluded that real-life networks appear to be composed of link-pattern communities that are interwoven and overlap with classical link-density communities. Further work could focus on creating a generic model to understand the conditions, such as the low level of clustering, for link-pattern communities to emerge, compared to link-density communities. The model could also help to explain why such link-pattern communities call the existing interpretation of small-world phenomena (six degrees of separation between nodes) into question.

Applications include the prediction of future friendships in online social networks, analysis of interactions in biological systems that are hard to observe otherwise, and detection of duplicated code in software systems.

Explore further: Stanford researchers focus on social networks to curb spread of disease

More information: Šubelj L., Bajec M. (2012), Ubiquitousness of link-density and link-pattern communities in real-world networks, European Physical Journal B (EPJ B) 85: 32, DOI: 10.1140/epjb/e2011-20448-7

Related Stories

Nurturing a seed of discovery

August 9, 2011

(PhysOrg.com) -- Network scientists at Northeastern University have collaborated with an interdisciplinary team of colleagues in cell biology and interactive data acquisition to create the first large-scale map of a plant’s ...

Recommended for you

ATLAS and CMS experiments shed light on Higgs properties

September 1, 2015

Three years after the announcement of the discovery of a new particle, the so-called Higgs boson, the ATLAS and CMS Collaborations present for the first time combined measurements of many of its properties, at the third annual ...

Tiny drops of early universe 'perfect' fluid

September 1, 2015

The Relativistic Heavy Ion Collider (RHIC), a particle collider for nuclear physics research at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, smashes large nuclei together at close to the speed of ...

New material science research may advance tech tools

August 31, 2015

Hard, complex materials with many components are used to fabricate some of today's most advanced technology tools. However, little is still known about how the properties of these materials change under specific temperatures, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Xbw
1 / 5 (1) Jan 30, 2012
I read through this article 3 times and am still confused. Are they saying that "friendships can be predicted"?

I think a bit more simplifying is in order.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.