Scientists demonstrate dual intrinsic and extrinsic control of stem cell aging

October 11, 2007

The Stowers Institute’s Xie Lab has published recent findings that reveal some of the factors underlying the aging of stem cells.

The paper, “Stem Cell Aging is Controlled both Intrinsically and Extrinsically in the Drosophila Ovary,” was published in the Oct. 11 issue of Cell Stem Cell. Lei Pan, Predoctoral Researcher, and Ting Xie, Ph.D., Associate Investigator, are the paper’s first and last authors, respectively.

It is widely postulated that a decrease in the number and activity of stem cells contributes to the aging of human tissue. These changes could be fundamental to many symptoms of aging such as wrinkling of skin and decreased organ function.

The control of stem cell aging has, until now, been poorly understood, but the Xie Lab has demonstrated that specific factors are associated with an age-dependent decline in the function of stem cells and their microenvironment, called a niche.

“In this study, we used Drosophila (fruit fly) ovarian germline stem cells (GSCs) as a model to demonstrate that age-dependent decline in the functions of stem cells and their niche contributes to overall aging of stem cells,” said Mr. Pan. “We examined three factors in the control of stem cell aging and found evidence that it is controlled both extrinsically and intrinsically.”

First, the team examined a family of proteins called bone morphogenic proteins (BMPs), which plays an important role in the development of many tissues. They found that as BMP signaling activity from the niche decreases with age, the stem cell’s ability to proliferate is compromised, and the stem cell population declines. Conversely, they established that an increase in BMP signaling can prolong the lifespan of stem cells and promote proliferation.

Second, the team established that time also takes a toll on the adhesion between stem cells and their niche. Strong adhesion can prolong a stem cell’s lifespan, and weakened adhesion can enhance stem cell aging.

Finally, the paper highlights how over-expression of an enzyme that helps eliminate free oxygen species, either in GSCs or in their niche, can prolong the lifespan of stem cells and increase proliferation.

“Inefficient replacement of worn-out cells in adult tissues due to the declining function of stem cells over time may be a primary cause of human aging,” says Dr. Xie. “If we learn how to slow down stem cell aging by manipulating functions of stem cells and/or their niche, we may be able to slow down human aging and the progression of age-related degenerative diseases.”

Source: Stowers Institute for Medical Research

Explore further: Defining immortality of stem cells to identify novel anti-aging mechanisms

Related Stories

Reactivation of embryonic genes leads to muscle aging

December 1, 2016

Developmental genes and pathways strictly regulate embryogenesis. The process is strongly driven by so-called Hox-genes. Now, researchers from the Leibniz Institute on Aging (FLI) in Jena, Germany, can show that one of these ...

Stem cells police themselves to reduce scarring

November 28, 2016

Treating mice with a compound that increases the expression of an inactive protein helped them heal from injury with less scarring, according to a study by researchers at the Stanford University School of Medicine.

Study provides neuronal mechanism for the benefits of fasting

December 1, 2016

A study from the Buck Institute offers for the first time an explanation for the benefits of fasting at the neuronal level, providing a possible mechanism for how fasting can afford health benefits. Publishing on December ...

New technique could double success of infertility treatment

November 10, 2016

Families struggling with infertility or a genetic predisposition for debilitating mitochondrial diseases may someday benefit from a new breakthrough led by scientists at OHSU and the Salk Institute for Biological Studies.

Recommended for you

Particles self-assemble into Archimedean tilings

December 8, 2016

(Phys.org)—For the first time, researchers have simulated particles that can spontaneously self-assemble into networks that form geometrical arrangements called Archimedean tilings. The key to realizing these structures ...

Protein disrupts infectious biofilms

December 8, 2016

Many infectious pathogens are difficult to treat because they develop into biofilms, layers of metabolically active but slowly growing bacteria embedded in a protective layer of slime, which are inherently more resistant ...

Electron highway inside crystal

December 8, 2016

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.