Computer models provide new insights for sustainable control of potato late blight

September 5, 2018, Wageningen University
Credit: CC0 Public Domain

Wageningen University & Research uses computer models to develop sustainable management strategies in the control of potato late blight, caused by Phytophthora infestans. Francine Pacilly will receive her Ph.D. on this socially relevant topic on September 4. Her research provides important insights for farmers, breeders, potato traders, retailers and governments. Resistant varieties can play an important role in sustainable disease control, but cooperation between stakeholders in the whole potato sector is required.

Potato production, which is very important for the Dutch economy, has long been threatened by the aggressive disease. This has major consequences for trade but also for national and international consumption. Moreover, fungicides which are used in disease control have a negative effect on the environment.

At the moment, large amounts of fungicides are used to control the disease. Organic farmers face an additional challenge because they are not allowed to use these chemicals. From an environmental point of view, these chemicals are also very polluting and therefore sustainable late blight management strategies are needed.

The use of disease-resistant varieties is important, however, no structural solution has yet been achieved because the pathogen can easily adapt and as a result can get infected. Furthermore, the availability of resistant varieties is still limited, however, more new resistant varieties are entering the market the coming years. Last year organic farmers, breeders and supermarkets signed a covenant to upscale the use of resistant potato varieties the coming three years so that by 2020 the organic segment of potatoes will consist entirely of resistant varieties.

In Francine Pacilly's Ph.D. research, computer models have been used to investigate how the disease spreads in an agricultural landscape and to analyze the effect of growing resistant varieties. These models show that an increase in the number of potato fields with resistant varieties increases the risk that aggressive strains of the pathogen emerge and spread. This risk decreases if more than 50% of the acreage of potato fields consists of resistant varieties. So many resistant potatoes are not yet available so alertness is required. Various strategies are available to limit the consequences of a breakthrough, for example the spatial allocation of crops in combination with the use of small amounts of fungicides to limit the environmental impact. In addition, growing resistant varieties with multiple resistance genes reduces the risk of susceptibility to the potato disease. It is expected that these type of varieties will enter the market soon.

Last year workshops with farmers were organized to increase awareness about the risk of resistance breakdown. In these workshops, the computer model was used to present several model scenarios to conventional and . These workshops were very useful for showing farmers how the disease spreads in a landscape over time and space and for showing the effects in the long term. After the workshop farmers agreed that resistance management is important to increase the durability of resistant varieties and that collaborative action is needed. The workshops were useful to bring farmers together and to discuss strategies in the control of late blight to reduce the impact of the disease.

In order to develop sustainable strategies it is important to consider all factors that influence late blight control such as the disease, the crop and control strategies of farmers. This research is part of the Complex Adaptive Systems program of Wageningen University where the goal is to identify these factors and to analyze how they influence each other. Potato late blight as one system brings a future without chemical control closer.

Explore further: Durably resistant potatoes with wild potato genes offer 80% reduction in chemical control

Related Stories

GM spuds beat blight

February 17, 2014

(Phys.org) —In a three-year GM research trial, scientists boosted resistance of potatoes to late blight, their most important disease, without deploying fungicides.

Bioscience researchers defeating potato blight

November 18, 2010

Researchers funded by the BBSRC Crop Science Initiative have made a discovery that could instigate a paradigm shift in breeding resistance to late blight – a devastating disease of potatoes and tomatoes costing the industry ...

Recommended for you

Light-based production of drug-discovery molecules

February 18, 2019

Photoelectrochemical (PEC) cells are widely studied for the conversion of solar energy into chemical fuels. They use photocathodes and photoanodes to "split" water into hydrogen and oxygen respectively. PEC cells can work ...

Solid-state catalysis: Fluctuations clear the way

February 18, 2019

The use of efficient catalytic agents is what makes many technical procedures feasible in the first place. Indeed, synthesis of more than 80 percent of the products generated in the chemical industry requires the input of ...

Engineered metasurfaces reflect waves in unusual directions

February 18, 2019

In our daily lives, we can find many examples of manipulation of reflected waves, such as mirrors, or reflective surfaces for sound that improve auditorium acoustics. When a wave impinges on a reflective surface with a certain ...

Design principles for peroxidase-mimicking nanozymes

February 18, 2019

Nanozymes, enzyme-like catalytic nanomaterials, are considered to be the next generation of enzyme mimics because they not only overcome natural enzymes' intrinsic limitations, but also possess unique properties in comparison ...

Sound waves let quantum systems 'talk' to one another

February 18, 2019

Researchers at the University of Chicago and Argonne National Laboratory have invented an innovative way for different types of quantum technology to "talk" to each other using sound. The study, published Feb. 11 in Nature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.