Turbulent transport of hydrogen fuel in fusion plasmas

December 16, 2016
Figure: Density fluctuations as computed by the GENE code in a cross section of the plasma. The background density profile with the “bump” caused by the pellet is also shown. Superimposed on a computer generated cross section of JET. Credit: EUROfusion, licensed under Creative Commons Attribution 4.0 International License

Using large-scale computer simulations, the Plasma Physics and Fusion Energy research group at the Department of Earth and Space Sciences is making important contributions to Joint European Torus (JET), the biggest fusion experiment currently in operation. The simulations provide information about plasma turbulence and transport of plasmas that would be impossible or too expensive to study experimentally.

The Plasma Physics and Fusion Energy group is involved in several international projects with the aim of realizing fusion as an energy source. The research is mainly done in collaboration with the Joint European Torus (JET), the largest fusion experiment currently in operation, and is focused on the preparation for the start of the experimental fusion reactor ITER that is being built in Cadarache, France. One of the current projects is focused on understanding how the hydrogen nuclei taking part in the fusion reaction can be replenished by injection of hydrogen pellets.

JET is uniquely suitable for the study of ITER issues because of its size and since it shares many features of the ITER design such as a metallic (beryllium and tungsten) wall and tritium capability. The Chalmers research group uses data from JET experiments in order to run large scale computer simulations of the turbulence and the associated transport of particles and energy.

"These numerical experiments let us study the turbulence at a level of detail which is not possible in the actual experiment. We also look at the impact of changes in plasma parameters that would be impossible or too expensive to study experimentally. The tool we use for this is the GENE code, a so-called gyrokinetic code that evolves the particle distribution function in five space and velocity dimensions," explains Daniel Tegnered, PhD student in the Plasma Physics and Fusion Energy group.

One of the crucial issues for ITER is how the plasma refuelling should be achieved. Particles of the plasma will unavoidably be lost, both to the wall, since the particle confinement will not be perfect, and also through the fusion reactions themselves which consume hydrogen nuclei. This makes continuous fuelling of the plasma a necessity. For ITER, so-called pellet fuelling is foreseen, whereby pellets containing appropriate hydrogen isotopes are injected at high speeds into the plasma. However, the pellets will not be able to reach the central part of the plasma with the highest densities and temperatures before being ablated. This will perturb the plasma's temperature and density profiles, causing a "bump" in the plasma density as shown in the image. These particles must then be transported inwards by diffusion and convection caused by the turbulence.

"Our simulations of pellet-fuelled JET discharges has shown that the turbulence under certain conditions can be stabilized in this region due to the "bump" in density and temperature," says Daniel Tegnered.

Further simulations of conditions more similar to ITER has also shown that a higher ratio of plasma pressure to magnetic pressure, a parameter important for the economic viability of future reactors, also serves to stabilize the turbulence in this region. This in turn reduces the inward particle flux, potentially making pellet fuelling less efficient. Further analysis and simulations of ITER-like JET discharges will be crucial for the successful development of plasma scenarios for ITER.

Explore further: A turbulent solution to a growing problem

More information: Gyrokinetic simulations of transport in pellet fuelled discharges at JET. ocs.ciemat.es/EPS2016PAP/pdf/P2.009.pdf

Related Stories

A turbulent solution to a growing problem

October 27, 2016

A recent experiment lead by University of California, Los Angeles (UCLA), researchers on the DIII-D tokamak suggests that plasma turbulence can prevent filamentary structures called magnetic islands from growing so large ...

Clarifying plasma oscillation by high-energy particles

November 29, 2016

The National Institute for Fusion Science has developed new code that can simulate the movement of plasma and, simultaneously, the movement of particles circulating at high speeds. In the Japanese fusion reactor called the ...

Scientists move step closer to solving fusion plasma dilemma

September 12, 2016

A team of researchers, affiliated with UNIST claims to have made yet another step towards finding a solution to one of the critical but unsolved fusion plasma physics problems, which is to mitigate or suppress the potentially ...

Extinguishing a fusion fire in a flash of light

October 27, 2016

Fusion energy researchers have discovered that they can rapidly extinguish and cool a magnetically confined fusion plasma hotter than the center of the sun by injecting a large quantity of neon gas to prevent damage to fusion-energy ...

Steering a fusion plasma toward stability

October 27, 2016

Plasmas in fusion-energy producing devices are gases heated to millions of degrees that can carry millions of amperes of current. These superhot plasmas must be kept away from material surfaces of the vacuum vessel that contains ...

Recommended for you

Three kinds of information from a single X-ray measurement

December 11, 2017

Whatever the size of mobile phones or computers are, the way in which such electronic devices operate relies on the interactions between materials. For this reason, engineers as well as researchers need to know exactly how ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.