New vacuum power amplifier demonstrated at 0.85 Terahertz

November 22, 2013
The world 's first terahertz-class traveling-wave tube amplifier. Credit: Northrop Grumman

The submillimeter wave, or terahertz, part of the electromagnetic spectrum falls between the frequencies of 0.3 and 3 terahertz, between microwaves and infrared light. Historically, device physics has prevented traditional solid state electronics (microchips) from operating at the terahertz scale. Unlocking this band 's potential may benefit military applications such as high data rate communications, improved radar and unique methods of spectroscopy—imaging techniques that provide better tools for scientific research. However, access to these applications is limited due to physics.

Researchers under DARPA 's Terahertz Electronics (THz) program have designed and demonstrated a 0.85 Terahertz using a micromachined vacuum tube—a world 's first. The achievement comes from DARPA-funded researchers at Northrop Grumman Electronic Systems, who built the 1 centimeter-wide traveling wave vacuum tube. The vacuum tube power amplifier is only one achievement of the broader THz program, which seeks to develop a variety of breakthrough component and integration technologies necessary to one day build complex THz circuits for communications and sensing.

"Vacuum tubes bring back visions of antique electronics, but these are not your grandparents' TV sets" said Dev Palmer, DARPA program manager. "DARPA-sponsored research has taken tools developed by the semiconductor and MEMS revolution—microfabrication methods and materials—and applied them to reliable, efficient technologies. This mix of old and new gives us a never-before-achieved terahertz-class vacuum power amplifier."

As solid-state and vacuum electronics approach the terahertz band, laser-based technologies are approaching from the other end of the spectrum. Unlike lasers, the electronics produced under THz would be able to handle multiple missions with a single system. For applications like ultra-high data rate digital communications, these technologies could enable wireless networks exceeding 100 gigabits per second—orders of magnitude faster than today 's networks.

Other applications include plans to insert the THz-class amplifier into a demonstration of DARPA 's Video Synthetic Aperture Radar (ViSAR). ViSAR seeks to build a sensor system for aerial platforms that peers through clouds to provide high-resolution, full-motion video for engaging moving ground targets in all weather conditions.

"Further research and development in this field will help unlock applications for our military in this historically difficult to access part of the spectrum," said Palmer.

Explore further: DARPA clears path for advanced communications, sensors

Related Stories

World record silicon-based millimeter-wave power amplifiers

March 27, 2013

Two teams of DARPA performers have achieved world record power output levels using silicon-based technologies for millimeter-wave power amplifiers. RF power amplifiers are used in communications and sensor systems to boost ...

Graphene may open the gate to future terahertz technologies

September 12, 2011

Nestled between radio waves and infrared light is the terahertz (THz) portion of the electromagnetic spectrum. By adding a nanoscale bit of graphene, researchers have found a better way to tune radiation for a THz transmitter.

Recommended for you

Physicists design $100 handheld muon detector

November 20, 2017

At any given moment, the Earth's atmosphere is showered with high-energy cosmic rays that have been blasted from supernovae and other astrophysical phenomena far beyond the Solar System. When cosmic rays collide with the ...

A curious quirk brings organic diode lasers one step closer

November 20, 2017

Since their invention in 1962, semiconductor diode lasers have revolutionized communications and made possible information storage and retrieval in CDs, DVDs and Blu-ray devices. These diode lasers use inorganic semiconductors ...

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

homeunt
not rated yet Nov 22, 2013
Well that sucks. Literally.
Eikka
2.3 / 5 (6) Nov 22, 2013
terrahertz


Why do people everywhere keep writing it that way when even the article repeats it twenty times correctly. Is this some sort of idiot-pad autocorrect feature or just plain stupidity?

Terra is latin and means "ground" or "earth". Tera is an SI prefix that means a thousand billion. It comes from greek and means "a monster".

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.