INRS overcomes a hurdle in the development of terahertz lasers

March 7, 2013, INRS

Dr. Roberto Morandotti and his team at the INRS Énergie Matériaux Télécommunications Research Centre have developed a device that is critical to the use of terahertz (THz) sources for a variety of applications.

Their electromagnetic non-reciprocal isolator is the subject of a recent article in Nature Communications, showing just how important this new development is. Until now, no isolator existed that was effective in the THz region of the spectrum, a situation that held back the development of certain technologies. The new device paves the way for applications using including the development of terahertz lasers and amplifiers, to which the scientific community is currently devoting much attention.

Recent advances in the field of THz wave sources and detectors have spurred the development of imaging, communications, and spectroscopy technologies—these last used in the detection of explosives. All these technologies use bandwidths for which current isolators are not suitable.

An isolator is needed to prevent reflected waves from distorting measurements or damaging other components. Thus the absence of a workable isolator represented a major limitation to the use of THz wave sources. Dr. Morandotti's work at INRS provides the first solution to this problem, using a strontium (SrFe12O19) magnet, which has the additional benefit of requiring no .

Explore further: Terahertz imaging goes the distance

More information: The article, entitled "A magnetic non-reciprocal isolator for broadband terahertz operation," appeared March 5, 2013, in Nature Communications (4:1558, DOI: 10.1038/natcomms2572).

Related Stories

Terahertz imaging goes the distance

April 26, 2007

Terahertz (THz) radiation, or far-infrared light, is potentially very useful for security applications, as it can penetrate clothing and other materials to provide images of concealed weapons, drugs, or other objects. However, ...

Photonics: strong vibrations

May 10, 2012

A new approach to generating terahertz radiation will lead to new imaging and sensing applications. The low energy of the radiation means that it can pass through materials that are otherwise opaque, opening up uses in imaging ...

Using terahertz imaging to seek quirks in corks at NJIT

December 8, 2010

As the holidays approach and you're buying wine, ever wonder what's really in a cork? Ask NJIT's John Federici, who has a new use for Terahertz imaging: searching for divots and cracks in wine corks to insure quality.

Graphene may open the gate to future terahertz technologies

September 12, 2011

Nestled between radio waves and infrared light is the terahertz (THz) portion of the electromagnetic spectrum. By adding a nanoscale bit of graphene, researchers have found a better way to tune radiation for a THz transmitter.

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.