Terahertz imaging goes the distance

April 26, 2007

Terahertz (THz) radiation, or far-infrared light, is potentially very useful for security applications, as it can penetrate clothing and other materials to provide images of concealed weapons, drugs, or other objects. However, THz scanners must usually be very close to the objects they are imaging. Doubts have lingered over whether it is possible to use THz waves to image objects that are far away, because water vapor in air absorbs THz radiation so strongly that most of it never reaches the object to be imaged.

At the upcoming CLEO/QELS meeting in Baltimore, an MIT-Sandia team will demonstrate the first real-time THz imaging system that obtains images from 25 meters away. The technique takes advantage of the fact that there are a few "windows," or frequency ranges, of the terahertz spectrum that do not absorb water very strongly.

The MIT-Sandia group designed a special, semiconductor-based device known as a "quantum cascade laser" that delivers light in one of these windows (specifically, around 4.9 THz). They shine this light through a thin target with low water content (for example, a dried seed pod), and a detector on the other side of the sample records an image.

A cryorefrigerator maintains the laser at a temperature of 30 Kelvin, where it produces 17 milliwatts of power (as opposed to the microwatts of power typical of pulsed terahertz sources) in order to provide enough terahertz radiation to obtain a decent image. Increasing the power of the lasers and sensitivity of the detectors can potentially enable imaging of thicker objects or imaging of the reflected light, which would be more practical for security applications. In addition, the development of high-operating-temperature quantum cascade lasers, which operate without the use of cryogenic materials, may also increase the availability of this approach. In the closer term, however, this approach may enable sensing of chemical residues or contaminants in the air.

Source: Optical Society of America

Explore further: Low-cost, flexible terahertz radiation source for fast and non-invasive screening

Related Stories

Laser guided codes advance single pixel terahertz imaging

June 25, 2013

The universe is awash in terahertz (THz) waves, as harmless as they are abundant. But unlike other regions of the electromagnetic spectrum, THz has proven to be extremely difficult to manipulate in order to capture novel ...

Single-pixel 'multiplex' captures elusive terahertz images

June 29, 2014

A novel metamaterial enables a fast, efficient and high-fidelity terahertz radiation imaging system capable of manipulating the stubborn electromagnetic waves, advancing a technology with potential applications in medical ...

Recommended for you

Scientists solve puzzle of turning graphite into diamond

February 23, 2017

(Phys.org)—Researchers have finally answered a question that has eluded scientists for years: when exposed to moderately high pressures, why does graphite turn into hexagonal diamond (also called lonsdaleite) and not the ...

Tiny particles with a big, cool role to play in microscopy

February 23, 2017

Researchers at UTS, as part of a large international collaboration, have made a breakthrough in the development of compact, low-cost and practical optical microscopy to achieve super-resolution imaging on a scale 10 times ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.