Magnetic memories manipulated by voltage, not heat

August 29, 2011, American Institute of Physics

In their search for smaller, faster information-storage devices, physicists have been exploring ways to encode magnetic data using electric fields. One advantage of this voltage-induced magnet control is that less power is needed to encode information than in a traditional system.

But earlier this year, researchers reported that a key of magnetization called coercivity is not controlled by voltage at all, but rather by an unfortunate byproduct of applying to a material – that is, by . (Coercivity is the tendency of a magnetic material to resist becoming demagnetized.)

To further explore whether voltage or heating is responsible for changes to a magnet's coercivity, scientists from Tsinghua University in Beijing, China, tested three structures commonly used in magnetic memory experiments. Their verdict: It's not the heat. In a paper accepted for publication in the AIP's Journal of Applied Physics, the authors show that the voltage is directly controlling changes in the magnetic properties of all three of the tested materials.

For example, the researchers demonstrate that the effect can be turned on and off almost instantaneously, whereas the changes should lag if heat is the cause. This is a good thing for the field, since a system that produces too much heat would slow down the performance of any real-world device made from this technology.

Explore further: Chameleon magnets: ability to switch magnets 'on' or 'off' could revolutionize computing

More information: "Switchable voltage control of the magnetic coercive field via magnetoelectric effect" by Jing Wang et al. is published in the Journal of Applied Physics.

Related Stories

Half-a-loaf method can improve magnetic memories

August 24, 2010

Chinese scientists have shown that magnetic memory, logic and sensor cells can be made faster and more energy efficient by using an electric, not magnetic, field to flip the magnetization of the sensing layer only about halfway, ...

Towards the magnetic fridge

April 21, 2006

Researchers at the University of Cambridge have discovered a material that gives a whole new complexion to the term 'fridge magnet'. When this alloy is placed in a magnetic field, it gets colder. Karl Sandeman and his co-workers ...

Progress toward terabit-rate high-density recording

September 21, 2010

Research is closing in on the next-generation of ultra-high-density magneto-optical storage devices that could store more than 6,000 Terabits (6 petabits) of data, more than 70 times the contents of the entire U.S. Library ...

Fridge magnet transformed

March 11, 2011

The ubiquitous and unremarkable magnet, BaFe12O19, is manufactured in large volumes, has the simplest crystal structure in its class, and is often seen on refrigerator doors—but it is set for an interesting future. By ...

Recommended for you

Some black holes erase your past

February 21, 2018

In the real world, your past uniquely determines your future. If a physicist knows how the universe starts out, she can calculate its future for all time and all space.

Reaching new heights in laser-accelerated ion energy

February 20, 2018

A laser-driven ion acceleration scheme, developed in research led at the University of Strathclyde, could lead to compact ion sources for established and innovative applications in science, medicine and industry.

MEMS chips get metatlenses

February 20, 2018

Lens technologies have advanced across all scales, from digital cameras and high bandwidth in fiber optics to the LIGO lab instruments. Now, a new lens technology that could be produced using standard computer-chip technology ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.