Simulated gene therapy

April 29, 2009

In a recent issue of The Journal of Chemical Physics, published by the American Institute of Physics (AIP), a group of researchers at the University of California, Berkeley and Los Alamos National Laboratory describe the first comprehensive, molecular-level numerical study of gene therapy. Their work should help scientists design new experimental gene therapies and possibly solve some of the problems associated with this promising technique.

"There are several barriers to gene delivery," says Nikolaos Voulgarakis of Berkeley, the lead author on the paper. "The genetic material must be protected during transit to a cell, it must pass into a cell, it must survive the cell's defense mechanisms, and it must enter into the cell's guarded nucleus."

If all of these barriers can be overcome, gene therapy would be a valuable technique with profound clinical implications. It has the potential to correct a number of human diseases that result from specific genes in a person's DNA makeup not functioning properly -- or at all. Gene therapy would provide a mechanism to replace these specific genes, swapping out the bad for the good. If doctors could safely do this, they could treat or even cure diseases like , certain types of cancer, sickle cell anemia, and a number of rare genetic disorders.

Safety is a primary concern when working with gene therapy. Some of the first attempts at gene therapy used viruses to insert DNA into cells -- something that viruses naturally do anyway. Viruses can be dangerously toxic, however, and this fact was tragically demonstrated a decade ago when an 18-year-old boy enrolled in a gene therapy study had a massive to the viruses used. He died just a few days into the treatment from multiple organ failure, precipitating an immediate halt to the trial.

Since then, many alternatives to viruses have emerged for use in gene therapy, including like "dendrimers," a word that derives from the Greek word for "tree." Similar to trees, dendrimers are branching molecules that are slightly positively charged. This allows them to be loaded with DNA (which is slightly negative charged) for insertion into a cell.

Dendrimers seem to offer many advantages over viruses. They may be much less toxic, and they may offer other advantages in terms of cost, ease of production, and the ability to transport very long genes. If they can be designed to efficiently -- and safely -- shuttle genes into human cells, then they may be a more practical solution to than viruses.

So far, laboratory experiments with different types of dendrimers have shown that they can insert genes into cells, but only with very low efficiency. Hoping to discover the key to improving this efficiency, Voulgarakis and his colleagues simulated the detailed, atomic-level physical process of dendrimers entering cells. They varied parameters like the dendrimer size and the length of the DNA they carry. Modeling these parameters on a computer is a fast, inexpensive approach for testing different ideas and optimizing the delivery vehicle.

What they uncovered were the key factors that determine the success of dendrimers as gene delivery vehicles -- things like the charges of the dendrimers and their target cell membranes, the length of DNA, and the concentration of surrounding salt. Their work has illuminated some of the molecular-level details that should help clinicians design the most appropriate gene vectors.

"Our study indicates that, over a broad range of biological conditions, the dendrimer/nucleic acid package will be stable enough to remain on the surface of the cell until translocation," says Voulgarakis.

Dendrimers are also used clinically for delivering cancer drugs to tumors, and for helping to image the human body. In the future, Voulgarakis and his colleagues plan to study the possibility of using dendrimers as drug delivery vehicles.

More information: The article " Dendrimers as Synthetic Gene Vectors: Cell Membrane Attachment" by N. K. Voulgarakis, K. Ř. Rasmussen, and P. M. Welch was published in the April 21, 2009 issue of The Journal of Chemical Physics [J. Chem. Phys. 130, 155101 (2009)]. See: link.aip.org/link/?JCPSA6/130/155101/1 .

Source: American Institute of Physics

Explore further: New research may help to design better gene therapy vectors

Related Stories

New research may help to design better gene therapy vectors

October 7, 2008

(PhysOrg.com) -- Research published by scientists from the University of Reading may offer an insight into ways of making safer and more specific gene therapy vectors. The research, published in the journal Nature Structural ...

'Jumping genes' could make for safer gene delivery system

September 26, 2007

To move a gene from point A to point B, scientists and gene therapists have two proven options: a virus, which can effectively ferry genes of interest into cells, and a plasmid, an engineered loop of DNA that can do the same ...

New lipid molecule holds promise for gene therapy

March 22, 2006

Scientists at the University of California, Santa Barbara have created a new molecule that holds promise in fighting disease via gene therapy. Inherited diseases, as well as many cancers and cardiovascular diseases, may eventually ...

Safer, more effective gene therapy

June 26, 2008

Athens, Ga. – The potential of gene therapy has long been hampered by the risks associated with using viruses as vectors to deliver healthy genes, but a new University of Georgia study helps bring scientists closer to a ...

RNAi shows promise in gene therapy, researcher says

February 19, 2007

Three years ago Mark Kay, MD, PhD, published the first results showing that a biological phenomenon called RNA interference could be an effective gene therapy technique. Since then he has used RNAi gene therapy to effectively ...

Recommended for you

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.