Polarization technique focuses limelight

December 26, 2007
Polarization technique focuses limelight
An artistic view of the HD189733 star-planet system near a half-moon phase when polarization of the light reflected by the planet reaches the maximum. Credit: ETH Zurich, S.V. Berdyugina

The ability to explore remote worlds in space has been enhanced through a polarization technique that allows the first ever detection of light reflected by extrasolar (exoplanet) planets. The study has been accepted for publication in Astrophysical Journal Letters.

An international team of astronomers, led by Professor Svetlana Berdyugina of ETH Zurich’s Institute of Astronomy, has for the first time ever been able to detect and monitor the visible light that is scattered in the atmosphere of an exoplanet.

Employing techniques similar to how Polaroid sunglasses filter away reflected sunlight to reduce glare, the team of scientists were able to extract polarized light to enhance the faint reflected starlight ‘glare’ from an exoplanet. As a result, the scientists could infer the size of its swollen atmosphere. They also directly traced the orbit of the planet, a feat of visualization not possible using indirect methods.

Hot Jupiter

The transiting exoplanet under study circles the dwarf star HD189733 in the constellation Vulpecula and lies more than 60 light years from the earth. Known as HD189733b, this exoplanet was discovered two years ago via Doppler spec-troscopy. HD189733b is so close to its parent star that its atmosphere expands from the heat. Until now, astronomers have never seen light reflected from an exoplanet, although they have deduced from other observations that HD189733b probably resembles a ‘hot Jupiter’ – a planet orbiting extremely closely to its parent star. Unlike Jupiter, however, HD189733b orbits its star in a couple of days rather than the 12 years it takes Jupiter to make one orbit of the sun.

Two half-moon phases

The international team, consisting of Svetlana Berdyugina, Dominique Fluri (ETH Zurich), Andrei Berdyugin and Vilppu Piirola (Tuorla Observatory, Finland), used the 60cm KVA telescope by remote control. The telescope, which belongs to the Royal Swedish Academy of Science, is located at La Palma, Spain and was modernised by scientists in Finland. The researchers obtained polarimetric measurements of the star and its planet. They discovered that polarization peaks near the moments when half of the planet is illuminated by the star as seen from the earth. Such events occur twice during the orbit, similar to half-moon phases.

The polarization indicates that the scattering atmosphere is considerably larger (>30%) than the opaque body of the planet seen during transits and most probably consists of particles smaller than half a micron, for example atoms, molecules, tiny dust grains or perhaps water vapour, which was recently sug-gested to be present in the atmosphere. Such particles effectively scatter blue light – in exactly the same scattering process that creates the blue sky of the earth’s atmosphere. The scientists were also able for the first time to recover the orientation of the planet’s orbit and trace its motion in the sky.

“The polarimetric detection of the reflected light from exoplanets opens new and vast opportunities for exploring physical conditions in their atmospheres”, Pro-fessor Svetlana Berdyugina said. “In addition, more can be learned about radii and true masses, and thus the densities of non-transiting planets.”

Citation: Svetlana V. Berdyugina, Andrei V. Berdyugin, Dominique M. Fluri, Vilppu Piirola: First detection of polarized scattered light from an exoplanetary atmosphere, Astrophys. J. Lett., online publication 24. December 2007.

Source: Swiss Federal Institute of Technology

Explore further: NASA satellites ready when stars and planets align

Related Stories

NASA satellites ready when stars and planets align

March 20, 2017

The movements of the stars and the planets have almost no impact on life on Earth, but a few times per year, the alignment of celestial bodies has a visible effect. One of these geometric events—the spring equinox—is ...

New technologies for astronomical research

March 9, 2017

The "Novel Astronomical Instrumentation through Photonic Reformatting" (NAIR) project is being funded by the DFG within the "New Instrumentation for Research" call for proposals. The project is being supported by the Königstuhl ...

Probing seven worlds with NASA's James Webb Space Telescope

March 2, 2017

With the discovery of seven earth-sized planets around the TRAPPIST-1 star 40 light years away, astronomers are looking to the upcoming James Webb Space Telescope to help us find out if any of these planets could possibly ...

Exoplanets 101: Looking for life beyond our Solar System

February 22, 2017

Seven Earth-like planets orbiting a small star in our Galaxy called Trappist-1, revealed Wednesday, are the most recent—and arguably the most spectacular—in a string of exoplanet discoveries going back 20 years.

Volcanic hydrogen spurs chances of finding exoplanet life

February 27, 2017

Hunting for habitable exoplanets now may be easier: Cornell University astronomers report that hydrogen pouring from volcanic sources on planets throughout the universe could improve the chances of locating life in the cosmos.

Recommended for you

Astronomers identify purest, most massive brown dwarf

March 24, 2017

An international team of astronomers has identified a record breaking brown dwarf (a star too small for nuclear fusion) with the 'purest' composition and the highest mass yet known. The object, known as SDSS J0104+1535, is ...

OSIRIS-REx asteroid search tests instruments, science team

March 24, 2017

During an almost two-week search, NASA's OSIRIS-REx mission team activated the spacecraft's MapCam imager and scanned part of the surrounding space for elusive Earth-Trojan asteroids—objects that scientists believe may ...

Andromeda's bright X-ray mystery solved by NuSTAR

March 24, 2017

The Milky Way's close neighbor, Andromeda, features a dominant source of high-energy X-ray emission, but its identity was mysterious until now. As reported in a new study, NASA's NuSTAR (Nuclear Spectroscopic Telescope Array) ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Doug_Huffman
1 / 5 (4) Dec 27, 2007
I can't believe that these authors haven't consulted the International Star Registry ("in book form in the US Copyright office") for a more attractive and concise name than HD189733. Might not there be some legal liability associated, ISR not insisting on whatever 'rights' its client subscribed or vice versa? The seriousness of these charges merits an investigation.
out7x
1 / 5 (1) Feb 07, 2008
This says nothing about composition of the exoplanet atmosphere.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.