Opposites interfere

July 26, 2007

In a classic physics experiment, photons (light particles), electrons, or any other quantum particles are fired, one at a time, at a sheet with two slits cut in it that sits in front of a recording plate. For photons, a photographic plate reveals an oscillating pattern (bands of light and dark) – a sign that each particle, behaving like a wave, has somehow passed through both slits simultaneously and interfered, canceling the light in some places and enhancing it in others.

If single quantum particles can exist in two places at once, and interfere with themselves in predictable patterns, what happens when there are two quantum particles? Can they interfere with each other?

Prof. Mordehai Heiblum of the Weizmann Institute’s Condensed Matter Physics Department and his research team have been experimenting with electrons fired across special semiconductor devices.

Quantum mechanics predicts that two electrons can indeed cause the same sort of interference as that of a single electron – on one condition: that the two are identical to the point of being indistinguishable. Heiblum and his team showed that, because of such interference, these two particles are entangled – the actions of one are inextricably tied to the actions of the other – even though they come from completely different sources and never interact with each other.

The team’s findings recently appeared in the journal Nature.

Dr. Izhar Neder and Nissim Ofek, together with Dr. Yunchul Chung, Dr. Diana Mahalu and Dr. Vladimir Umansky, fired such identical electron pairs from opposite sides of their device, toward detectors that were placed two to a side of the device.

In other words, each pair of detectors could detect the two particles arriving in one of two ways: particle 1 in detector 1 and particle 2 in detector 2, or, alternatively, particle 2 in detector 1 and particle 1 in detector 2. Since these two 'choices' are indistinguishable, the 'choices' interfere with each other in the same way as the two possible paths of a single quantum particle interfere.

The scientists then investigated how the 'choice' of one particle affected the pathway taken by the other, and found strong correlations between them. These correlations could be affected by changing, for example, the length of the path taken by one particle. This is the first time an oscillating interference pattern between two identical particles has been observed, proving, once again, the success of quantum theory.

Source: Weizmann Institute of Science

Explore further: Quantum optics offers alternative to expensive lasers in spectroscopy

Related Stories

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

How to cut your lawn for grasshoppers

November 22, 2017

Picture a grasshopper landing randomly on a lawn of fixed area. If it then jumps a certain distance in a random direction, what shape should the lawn be to maximise the chance that the grasshopper stays on the lawn after ...

Topological insulators—one glimpse is enough

November 21, 2017

The Nobel Prize for physics in 2016 was awarded for the theory of topological matter. Topological insulators are new materials with special electronic properties and are of great fundamental and applications-oriented interest. ...

Recommended for you

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.