Where’s the Starting Point? Researchers try to unravel the mystery of DNA Replication During Cell Division

April 7, 2006

Cells divide so that an organism can grow, wounds can heal or cells with a limited lifetime, such as blood cells, can be renewed. However, before a cell starts to divide it must first replicate its entire genetic makeup (i.e., its DNA). This basic biological principle holds true for yeast, bacteria, viruses, and animals, and, thus, also for humans.

The cell must ensure that the entire genetic material – in humans three billion nucleotides – is replicated without loss, thus preventing the genome from becoming unstable and causing malformations or diseases such as cancer. But how and where does DNA replication start?

“For the last 20 years, researchers have tried to identify such starting points or origins in the DNA of mammals. But we cannot find them”, says Dr. Manfred Gossen, research group leader at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany. Shedding light onto this “blackbox”, as he says, is one of the scientists in his laboratory, Dr. Anand Ranjan (now at the National Institutes of Health, NIH the USA) who has just authored a paper in the Proceedings of the National Ascademy of Sciences (PNAS) (Vol.103, No. 13, pp.4864-4869, 2006).

In yeast, researchers know the origin of DNA replication. A complex made up of several proteins binds to certain regions of the DNA, depending on the presence of the molecule ATP (adenosine triphosphate), best known as nature’s energy store. This DNA-binding process of the protein complex initiates DNA replication in yeast.

In humans, replication of the 46 chromosomes (which contain the complete DNA sequence) starts at thousands of different sites, which are not known in detail. What is clear is that replication must be carried out in a very precise and synchronized way to ensure the stability of the genome. ATP also plays a role in this process in humans by managing the formation of the protein complex (similar to the one in yeast) and, thereby, and ensuring its stability as shown by Drs. Ranjan and Gossen. However, unlike in yeast, in human cells, ATP acts ahead of the protein complex’ s binding to the DNA origins. Moreover, in studying DNA replication in humans, researchers still do not know where within the DNA molecule replication begins. However, the new findings of Drs. Ranjan and Gossen will facilitate the analysis of those mechanisms which regulate human DNA replication.

Source: Max Delbrueck Centre for Molecular Medicine

Explore further: Team's advance allows gene editing with surgical precision

Related Stories

Team's advance allows gene editing with surgical precision

November 16, 2017

Yale researchers report they have created a more precise and efficient technology to edit the genomes of living organisms, an ability that is transforming medicine and biotechnology. The new method, described Nov. 16 in the ...

Scientists unravel mysteries of DNA replication in corn

September 21, 2017

DNA replication is among life's most important processes, providing a way for an organism's genetic material to be reproduced so it can be passed from cell to cell. For the first time, scientists have characterized that process ...

Mixing and matching yeast DNA

September 7, 2017

Osaka University scientists show molecular factors that determine why some regions in yeast chromosomes are apt for remodeling, while other regions stay faithful during cell replication.

Structural insights into processes at DNA damage sites

October 16, 2017

Ishan Deshpande and his colleagues from the group of Susan Gasser and the Protein Structure Facility at the FMI elucidated the mechanism of how Mec1-Ddc2, a tumor suppressor involved in DNA damage response assembles at sites ...

Recommended for you

Utrecht chemists prove Nobel Prize-winner Olah correct

November 21, 2017

In 1877, Charles Friedel and James Craft discovered a chemical reaction for quickly producing raw materials for plastics, fine chemicals and detergents. More than 100 years later, in 1994, the American George Olah won the ...

Study identifies new malaria parasites in wild bonobos

November 21, 2017

Malaria parasites, although widespread among wild chimpanzees and gorillas, have not been detected in bonobos, a chimp cousin. Reasoning that previous studies may have missed infected bonobo populations, a team led by Beatrice ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.