New nanotoxicity framework

Oct 21, 2005

For the first time, investigators have a framework for assessing what health risks novel manmade nanomaterials might pose humans, experts told UPI's Nano World.
A new report from government, industry and non-profit researchers maps out a strategy for scientists nationwide to follow to best understand what hazards these compounds might present.

"If we are to see public trust of these new materials, we've got to understand the possible hazards and how to minimize the risks associated with those hazards," said Andrew Maynard, chief science adviser for the Woodrow Wilson Center's Project on Emerging Nanotechnologies in Washington.

"We're going to have to carry out many, many studies to understand those hazards, and those studies will have to be carried out with a common basis," Maynard added. The new report "is a major step" in developing that basis.

When it comes to providing recommendations to companies, "I think this report represents an excellent beginning framework," said David Warheit, a staff toxicologist at DuPont's Haskell Laboratory in Delaware.

As U.S. researchers confer with their colleagues abroad in the coming months, this framework "could help work towards global harmonization of approaches," noted Jim Willis, director of the Environmental Protection Agency's Office of Pollution Prevention and Toxics' Chemical Control Division in Washington.

The strategy has three key elements. The first involves distinguishing the unique chemical and physical structures of each nanomaterial. In the past, when scientists tested how toxic compounds were, properties such as the size or shape that material came in were often not considered important. Research now shows the toxic properties of a material can vary dramatically on how these other properties change, Maynard said. The report notes that until scientists have a better understanding of how these characteristics may render a nanomaterial more or less hazardous, they should consider all such properties potentially significant and measure them as best possible.

The strategy's other elements involve testing how toxic a nanomaterial is against cells or tissues grown in labs (in vitro studies) and how toxic it is against live animals (in vivo studies). While in vitro studies are cheaper, Warheit noted in vitro studies could get directly opposite effects from in vivo studies. Until the accuracy of in vitro studies in nanomaterial toxicology are validated, "in my opinion, they're not they're yet" as useful screens, he said.

A major consideration researchers should have when it comes to nanomaterial toxicology is how inhaled nanomaterials could move from the lungs into the blood and lymph and then distant organs to a greater extent than bulk materials such as fibers would. "A screening strategy should look at the impact of particles on other organs," Warheit said.

The report will appear in the journal Particle and Fibre Toxicology.

Copyright 2005 by United Press International

Explore further: Pinpoint laser heating creates a maelstrom of magnetic nanotextures

add to favorites email to friend print save as pdf

Related Stories

Billions of 'nanoreactors' inform materials design

Nov 18, 2014

Imagine building a chemical reactor small enough to study nanoparticles a billionth of a meter across. A billion times smaller than a raindrop is the volume of an E. coli cell. And another million times smaller ...

Princeton team explores 3D-printed quantum dot LEDs

Nov 06, 2014

Some of the most important developments marking advances in the 3D printing industry are in the realm of material science, notes 3d Printing Industry. "The more materials we can print, the more useful the ...

Recommended for you

Gold nanorods target cancer cells

Dec 18, 2014

Using tiny gold nanorods, researchers at Swinburne University of Technology have demonstrated a potential breakthrough in cancer therapy.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.