Dark field imaging of rattle-type silica nanorattles coated gold nanoparticles in vitro and in vivo

Apr 29, 2013
Dark field imaging of rattle-type silica nanorattles coated gold nanoparticles in vitro and in vivo
SN @ GNs showed dark field imaging function of cell and animal tissue and significantly improved the biocompatibility of gold nanoparticles. Credit: Science China Press

In recent years, metal nanoparticles have showed great application prospect in the field of biological imaging, cancer diagnosis and treatment due to its unique optical scattering and optical absorption properties. In many metal materials, gold nanoparticles have caused concerns in the field because of its simple preparation, easy to modify advantages. However, the poor stability in physiological fluids environment and the potential toxicity of gold nanoparticles always restricts its application in the biological field.

TANG Fangqiong and her group from Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, have been devoted to the controllable preparation of nanomaterials and biological applications. In recent years, they invented a method to fabricate silica nanoparticles with the special rattles-type structure named silica nanorattles (SNs) and developed the nanoparticles as , biological detection and catalytic. Their work, entitled "Dark field imaging of rattle-type silica nanorattles coated gold nanoparticles in vitro and in vivo", was published in Chinese Science Bulletin 2013, Vol 58(7).

In this paper, the gold nanoparticles were ingeniously hybridized into the hollow cavity of silica nanorattles. Then, a new type silica nanorattles coated gold nanoparticles (Silica nanorattles @ gold nanoparticles, SN @ GNs) was obtained. It has advantage as following, scale preparation, good stability in the physiological environment and reduce gold nanoparticles agglomeration. These particles remained the strong optical scattering of gold nanoparticles and plasma resonance properties which can be used in dark field imaging of cells and animal tissues in vivo (figure 1). And more important is the silica nanoshells significantly reduced the toxicity of gold nanoparticles in vivo, which increase the maximum tolerated dose to 200 mg/kg.

Above all, TANG group have developed a new type of composite nanoparticles combination of silica good biocompatibility and the optical properties of . It provides a new material and method for the application of nanomaterials in biological imaging and disease diagnosis.

Explore further: Research reveals how our bodies keep unwelcome visitors out of cell nuclei

More information: LIU TianLong, TAN LongFei, TANG Fangqiong et al. Dark field imaging of rattle-type silica nanorattles coated gold nanoparticles in vitro and in vivo[J]. Chinese Science Bulletin, 2013, 58(7): 531-536 csb.scichina.com:8080/kxtb/CN/… abstract510342.shtml

add to favorites email to friend print save as pdf

Related Stories

Natural Gum Improves Gold Nanoparticles for Cancer Imaging

Feb 12, 2007

Gold nanoparticles have shown significant promise as agents to detect and treat cancer, but researchers have had difficulty creating gold nanoparticles that have suitable pharmacological properties for use in humans. A team ...

Gold and silver nano baubles

Dec 03, 2010

They might just be the smallest Christmas tree decorations ever. Tiny spherical particles of gold and silver that are more than 100 million times smaller than the gold and silver baubles used to decorate seasonal fir trees ...

Recommended for you

Study shows graphene able to withstand a speeding bullet

12 hours ago

(Phys.org)—A team of researchers working at Rice University in the U.S. has demonstrated that graphene is better able to withstand the impact of a bullet than either steel or Kevlar. In their paper published ...

Nanomaterials to preserve ancient works of art

Nov 27, 2014

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

Nov 27, 2014

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.