A pinwheel in many colors

May 25, 2012
This image of the Pinwheel Galaxy, or also known as M101, combines data in the infrared, visible, ultraviolet and X-rays from four of NASA's space-based telescopes. This multi-spectral view shows that both young and old stars are evenly distributed along M101's tightly-wound spiral arms. Such composite images allow astronomers to see how features in one part of the spectrum match up with those seen in other parts. It is like seeing with a regular camera, an ultraviolet camera, night-vision goggles and X-ray vision, all at the same time.

(Phys.org) -- This image of the Pinwheel Galaxy, or also known as M101, combines data in the infrared, visible, ultraviolet and X-rays from four of NASA's space-based telescopes. This multi-spectral view shows that both young and old stars are evenly distributed along M101's tightly-wound spiral arms. Such composite images allow astronomers to see how features in one part of the spectrum match up with those seen in other parts. It is like seeing with a regular camera, an ultraviolet camera, night-vision goggles and X-ray vision, all at the same time.

The Pinwheel Galaxy is in the constellation of Ursa Major (also known as the Big Dipper). It is about 70% larger than our own , with a diameter of about 170,000 light years, and sits at a distance of 21 million light years from Earth. This means that the light we're seeing in this image left the Pinwheel Galaxy about 21 million years ago - many millions of years before humans ever walked the Earth.

The hottest and most energetic areas in this composite image are shown in purple, where the Chandra X-ray Observatory observed the X-ray emission from exploded stars, million-degree gas, and material colliding around black holes.

The Electromagnetic Spectrum. Wavelengths and energies from gamma rays to radio.

The red colors in the image show infrared light, as seen by the . These areas show the heat emitted by dusty lanes in the galaxy, where stars are forming.

The yellow component is visible light, observed by the . Most of this light comes from stars, and they trace the same spiral structure as the dust lanes seen in the infrared.

The blue areas are ultraviolet light, given out by hot, young stars that formed about 1 million years ago, captured by the (GALEX).

Explore further: Image: NGC 6872 in the constellation of Pavo

add to favorites email to friend print save as pdf

Related Stories

Amazing Andromeda Galaxy

Oct 03, 2006

The many "personalities" of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

Spitzer captures infrared rays from a sunflower

Mar 04, 2011

(PhysOrg.com) -- The various spiral arm segments of the Sunflower galaxy, also known as Messier 63, show up vividly in this image taken in infrared light by NASA's Spitzer Space Telescope. Infrared light is ...

Akari's observations of galaxy M101

Sep 07, 2007

M101 is a spiral galaxy, 170 000 light-years in diameter. AKARI’s new observations reveal differing populations of stars spread across its spiral arms.

Spectacular Hubble View of Centaurus A

Jun 16, 2011

(PhysOrg.com) -- The NASA/ESA Hubble Space Telescope has produced a close-up view of the galaxy Centaurus A. Hubble’s out-of-this-world location and world-class Wide Field Camera 3 instrument reveal a ...

Spitzer sees spider web of stars

Jul 21, 2011

(PhysOrg.com) -- Those aren't insects trapped in a spider's web -- they're stars in our own Milky Way galaxy, lying between us and another spiral galaxy called IC 342. NASA's Spitzer Space Telescope captured ...

The two-faced whirlpool galaxy

Jan 14, 2011

(PhysOrg.com) -- These images by NASA's Hubble Space Telescope show off two dramatically different face-on views of the spiral galaxy M51, dubbed the Whirlpool Galaxy.

Recommended for you

Image: NGC 6872 in the constellation of Pavo

13 hours ago

This picture, taken by the NASA/ESA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused ...

Measuring the proper motion of a galaxy

13 hours ago

The motion of a star relative to us can be determined by measuring two quantities, radial motion and proper motion. Radial motion is the motion of a star along our line of sight. That is, motion directly ...

Gravitational waves according to Planck

Sep 22, 2014

Scientists of the Planck collaboration, and in particular the Trieste team, have conducted a series of in-depth checks on the discovery recently publicized by the Antarctic Observatory, which announced last ...

Infant solar system shows signs of windy weather

Sep 22, 2014

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have observed what may be the first-ever signs of windy weather around a T Tauri star, an infant analog of our own Sun. This may help ...

Finding hints of gravitational waves in the stars

Sep 22, 2014

Scientists have shown how gravitational waves—invisible ripples in the fabric of space and time that propagate through the universe—might be "seen" by looking at the stars. The new model proposes that ...

How gamma ray telescopes work

Sep 22, 2014

Yesterday I talked about the detection of gamma ray bursts, intense blasts of gamma rays that occasionally appear in distant galaxies. Gamma ray bursts were only detected when gamma ray satellites were put ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Tuxford
1 / 5 (5) May 25, 2012
And the name should give one a clue as to the structure. Looks like a spinning firework, spraying matter into the universe. Perhaps it really is!

http://phys.org/n...wer.html