New device creates lipid spheres that mimic cell membranes

Dec 16, 2011

A new way of manipulating fluids on microscopic levels brings us one step closer to "bottom-up" artificial cell constructs.

Opening up a new door in synthetic biology, a team of researchers has developed a microfluidic device that produces a continuous supply of tiny spheres that are similar in many ways to a cell's .

"Cells are essentially small, complex bioreactors enclosed by phospholipid membranes," said Abraham Lee from the University of California, Irvine. "Effectively producing vesicles with lipid membranes that mimic those of natural cells is a for fundamental biology research, and it's also an important first step in the hoped-for production of an artificial cell."

The researchers have taken an important step in advancing this field by developing a single system that quickly and efficiently performs all the necessary steps to create stable lipid vesicles. Current multistep production methods create vesicles that have inconsistent sizes and layers and short usable lifespans, and they are often contaminated with solvents used in their production.

A paper accepted for publication in the AIP's journal.

Biomicrofluidics reports that the new microfluidic design overcomes these previous hurdles by generating and manipulating precisely sized droplets of water in an oil environment. This produces an oil-and-water membrane that serves as a scaffold around which lipids molecules assemble. As the membrane dissolves over time, the accumulated lipids form a stable, uniform vesicle that shares many of a natural cell membrane's chemical and .

Explore further: Researchers create designer 'barrel' proteins

More information: "Stable, Biocompatible Lipid Vesicle Generation by Solvent Extraction-based Droplet Microfluidics" is accepted for publication in the journal Biomicrofluidics.

Provided by American Institute of Physics

3 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Progress Toward Artificial Cells

Aug 11, 2009

(PhysOrg.com) -- In cosmetics, lipid vesicles, also known as liposomes, effectively transport ingredients through the skin. However, they are also used to encapsulate pharmaceuticals and release them at the intended point ...

Scientists create cell assembly line

Mar 03, 2011

Borrowing a page from modern manufacturing, scientists from the Florida campus of The Scripps Research Institute have built a microscopic assembly line that mass produces synthetic cell-like compartments.

Study brings secrets of brain cell communication closer

Oct 05, 2011

(Medical Xpress) -- Researchers at The University of Queensland's Queensland Brain Institute (QBI) have taken a significant step towards unravelling the mechanism by which communication between brain cells occurs.

Nanomaterials to Mimic Cells

Aug 23, 2005

Mimicking a real living cell by combining artificial membranes and nanomaterials in one construction is the aim of a new research grant at UC Davis. The Nanoscale Integrated Research Team grant, funded by the National Science ...

Recommended for you

Amino acids key to new gold leaching process

5 hours ago

Curtin University scientists have developed a gold and copper extraction process using an amino acid–hydrogen peroxide system, which could provide an environmentally friendly and cheaper alternative to ...

Researchers create designer 'barrel' proteins

23 hours ago

Proteins are long linear molecules that fold up to form well-defined 3D shapes. These 3D molecular architectures are essential for biological functions such as the elasticity of skin, the digestion of food, ...

User comments : 0