New device creates lipid spheres that mimic cell membranes

December 16, 2011

A new way of manipulating fluids on microscopic levels brings us one step closer to "bottom-up" artificial cell constructs.

Opening up a new door in synthetic biology, a team of researchers has developed a microfluidic device that produces a continuous supply of tiny spheres that are similar in many ways to a cell's .

"Cells are essentially small, complex bioreactors enclosed by phospholipid membranes," said Abraham Lee from the University of California, Irvine. "Effectively producing vesicles with lipid membranes that mimic those of natural cells is a for fundamental biology research, and it's also an important first step in the hoped-for production of an artificial cell."

The researchers have taken an important step in advancing this field by developing a single system that quickly and efficiently performs all the necessary steps to create stable lipid vesicles. Current multistep production methods create vesicles that have inconsistent sizes and layers and short usable lifespans, and they are often contaminated with solvents used in their production.

A paper accepted for publication in the AIP's journal.

Biomicrofluidics reports that the new microfluidic design overcomes these previous hurdles by generating and manipulating precisely sized droplets of water in an oil environment. This produces an oil-and-water membrane that serves as a scaffold around which lipids molecules assemble. As the membrane dissolves over time, the accumulated lipids form a stable, uniform vesicle that shares many of a natural cell membrane's chemical and .

Explore further: Nanomaterials to Mimic Cells

More information: "Stable, Biocompatible Lipid Vesicle Generation by Solvent Extraction-based Droplet Microfluidics" is accepted for publication in the journal Biomicrofluidics.

Related Stories

Nanomaterials to Mimic Cells

August 23, 2005

Mimicking a real living cell by combining artificial membranes and nanomaterials in one construction is the aim of a new research grant at UC Davis. The Nanoscale Integrated Research Team grant, funded by the National Science ...

Progress Toward Artificial Cells

August 11, 2009

( -- In cosmetics, lipid vesicles, also known as liposomes, effectively transport ingredients through the skin. However, they are also used to encapsulate pharmaceuticals and release them at the intended point ...

Scientists create cell assembly line

March 3, 2011

Borrowing a page from modern manufacturing, scientists from the Florida campus of The Scripps Research Institute have built a microscopic assembly line that mass produces synthetic cell-like compartments.

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.