Engineers develop material that could speed telecommunications

Jul 25, 2011
In this illustration, light hits Kocaman’s and Wong’s specially engineered material without leaving a trace. The actual material is no thicker than one hundredth of the diameter of a strand of hair.

Researchers at Columbia Engineering School have demonstrated that light can travel on an artificial material without leaving a trace under certain conditions, technology that would have many applications from the military to telecommunications.

In a study published July 10 on ’s website, Serdar Kocaman, an electrical engineering Ph.D. candidate, and Chee Wei Wong, associate professor of mechanical engineering, demonstrated how an optical nanostructure can be built that controls the way bounces off it.
 
When light travels, it bends—in technical terms, it disperses and incurs “phase,” an oscillating curve that leaves a trail of information behind it. Those oscillations show an object’s properties, such as shape and size, which can identify it. However, light hits Kocaman’s and Wong’s specially engineered material without leaving a trace.
 
Every natural known material has a positive : when light hits it, the light bends or refracts. The researchers engineered a structure in which they etched tiny holes, creating a material known as a “photonic crystal” which behaves as though it has zero index – light can travel with an ultrafast velocity in this environment. The material, a coating no thicker than one hundredth of the diameter of a strand of hair, has properties that don’t occur in nature.
 
“We’re very excited about this. We’ve engineered and observed a metamaterial with zero refractive index,” said Kocaman. “Even in a vacuum, light propagates with a phase advancement. With the zero phase advancement, what we’ve seen is that the light travels through the material as if the entire space is missing.”
 
“We can now control the flow of light, the fastest thing known to us,” Wong said. “This can enable self-focusing light beams, highly directive antennas, and even potentially an approach to hide objects, at least in the small scale or a narrow band of frequencies.”
 
The zero-index material was based on a negative refractive index material and a superlattice material demonstrated consecutively in 2008 and 2009 by the scientists. In the new paper Kocaman and Wong, together with colleagues, demonstrate that the optical phase advancement can be controlled and even eliminated under certain conditions.
 
The study was led by Wong and Kocaman, in collaboration with scientists at the University College of London, Brookhaven National Laboratory, and the Institute of Microelectronics of Singapore. It is the first time phase and zero-index observations have been made on both a photonic chip scale and at infrared wavelengths. These photonic chip circuits can be helpful in fiberoptic networks.

Explore further: The first direct-diode laser bright enough to cut and weld metal

Related Stories

Scientists reverse Doppler Effect

Mar 07, 2011

(PhysOrg.com) -- Researchers from Swinburne University and the University of Shanghai for Science and Technology have for the first time ever demonstrated a reversal of the optical ‘Doppler Effect’ ...

A new twist for nanopillar light collectors

Nov 16, 2010

Sunlight represents the cleanest, greenest and far and away most abundant of all energy sources, and yet its potential remains woefully under-utilized. High costs have been a major deterrant to the large-scale ...

New biomaterial more closely mimics human tissue

May 26, 2011

(PhysOrg.com) -- A new biomaterial designed for repairing damaged human tissue doesn’t wrinkle up when it is stretched. The invention from nanoengineers at the University of California, San Diego marks ...

Scientists make quantum breakthrough

Apr 20, 2011

(PhysOrg.com) -- Scientists have demonstrated for the first time that atoms can be guided in a laser beam and possess the same properties as light guided in an optical communications fiber.

Recommended for you

Mapping the optimal route between two quantum states

25 minutes ago

As a quantum state collapses from a quantum superposition to a classical state or a different superposition, it will follow a path known as a quantum trajectory. For each start and end state there is an optimal ...

Spin-based electronics: New material successfully tested

4 hours ago

Spintronics is an emerging field of electronics, where devices work by manipulating the spin of electrons rather than the current generated by their motion. This field can offer significant advantages to computer technology. ...

Verifying the future of quantum computing

6 hours ago

Physicists are one step closer to proving the reliability of a quantum computer – a machine which promises to revolutionise the way we trade over the internet and provide new tools to perform powerful simulations.

A transistor-like amplifier for single photons

Jul 29, 2014

Data transmission over long distances usually utilizes optical techniques via glass fibres – this ensures high speed transmission combined with low power dissipation of the signal. For quite some years ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Jarek
not rated yet Jul 25, 2011
It would be interesting to place such material after 2 slits - phase remains constant and so there should be no interference behind, but only classical pattern ...
Here is another article about it and discussion: http://physicswor...ws/46575