Engineers develop material that could speed telecommunications

Jul 25, 2011
In this illustration, light hits Kocaman’s and Wong’s specially engineered material without leaving a trace. The actual material is no thicker than one hundredth of the diameter of a strand of hair.

Researchers at Columbia Engineering School have demonstrated that light can travel on an artificial material without leaving a trace under certain conditions, technology that would have many applications from the military to telecommunications.

In a study published July 10 on ’s website, Serdar Kocaman, an electrical engineering Ph.D. candidate, and Chee Wei Wong, associate professor of mechanical engineering, demonstrated how an optical nanostructure can be built that controls the way bounces off it.
 
When light travels, it bends—in technical terms, it disperses and incurs “phase,” an oscillating curve that leaves a trail of information behind it. Those oscillations show an object’s properties, such as shape and size, which can identify it. However, light hits Kocaman’s and Wong’s specially engineered material without leaving a trace.
 
Every natural known material has a positive : when light hits it, the light bends or refracts. The researchers engineered a structure in which they etched tiny holes, creating a material known as a “photonic crystal” which behaves as though it has zero index – light can travel with an ultrafast velocity in this environment. The material, a coating no thicker than one hundredth of the diameter of a strand of hair, has properties that don’t occur in nature.
 
“We’re very excited about this. We’ve engineered and observed a metamaterial with zero refractive index,” said Kocaman. “Even in a vacuum, light propagates with a phase advancement. With the zero phase advancement, what we’ve seen is that the light travels through the material as if the entire space is missing.”
 
“We can now control the flow of light, the fastest thing known to us,” Wong said. “This can enable self-focusing light beams, highly directive antennas, and even potentially an approach to hide objects, at least in the small scale or a narrow band of frequencies.”
 
The zero-index material was based on a negative refractive index material and a superlattice material demonstrated consecutively in 2008 and 2009 by the scientists. In the new paper Kocaman and Wong, together with colleagues, demonstrate that the optical phase advancement can be controlled and even eliminated under certain conditions.
 
The study was led by Wong and Kocaman, in collaboration with scientists at the University College of London, Brookhaven National Laboratory, and the Institute of Microelectronics of Singapore. It is the first time phase and zero-index observations have been made on both a photonic chip scale and at infrared wavelengths. These photonic chip circuits can be helpful in fiberoptic networks.

Explore further: Bake your own droplet lens

Related Stories

Scientists reverse Doppler Effect

Mar 07, 2011

(PhysOrg.com) -- Researchers from Swinburne University and the University of Shanghai for Science and Technology have for the first time ever demonstrated a reversal of the optical ‘Doppler Effect’ ...

A new twist for nanopillar light collectors

Nov 16, 2010

Sunlight represents the cleanest, greenest and far and away most abundant of all energy sources, and yet its potential remains woefully under-utilized. High costs have been a major deterrant to the large-scale ...

New biomaterial more closely mimics human tissue

May 26, 2011

(PhysOrg.com) -- A new biomaterial designed for repairing damaged human tissue doesn’t wrinkle up when it is stretched. The invention from nanoengineers at the University of California, San Diego marks ...

Scientists make quantum breakthrough

Apr 20, 2011

(PhysOrg.com) -- Scientists have demonstrated for the first time that atoms can be guided in a laser beam and possess the same properties as light guided in an optical communications fiber.

Recommended for you

Bake your own droplet lens

6 hours ago

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost ...

Precise control of optical frequency on a chip

Apr 23, 2014

In the 1940s, researchers learned how to precisely control the frequency of microwaves, which enabled radio transmission to transition from relatively low-fidelity amplitude modulation (AM) to high-fidelity ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Jarek
not rated yet Jul 25, 2011
It would be interesting to place such material after 2 slits - phase remains constant and so there should be no interference behind, but only classical pattern ...
Here is another article about it and discussion: http://physicswor...ws/46575

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

Autism Genome Project delivers genetic discovery

A new study from investigators with the Autism Genome Project, the world's largest research project on identifying genes associated with risk for autism, has found that the comprehensive use of copy number variant (CNV) genetic ...

Study links California drought to global warming

While researchers have sometimes connected weather extremes to man-made global warming, usually it is not done in real time. Now a study is asserting a link between climate change and both the intensifying California drought ...