Major physics breakthrough in understanding supersolidity

December 5, 2007

Physicists at the University of Alberta, in Edmonton, Alberta, Canada, have made a major advance in the understanding of what appears to be a new state of matter.

Working in the highly specialized field of quantum fluids and solids, Prof. John Beamish, chair of the Department of Physics, and PhD student James Day, report their findings in a paper to be published in the science journal Nature on Wednesday, Dec. 6, 2007. Beamish and Day are the only researchers in Canada conducting experimental research in this area of fundamental physics.

At very low temperatures, helium gas turns into a liquid. Put under extreme pressure the liquid turns into a solid. Physicists have been manipulating solid helium so they can study its unusual behaviour.

In 2004, a research team at Penn State university in the United States, led by Dr. Moses Chan, electrified the physics world when it announced that it may have discovered an entirely new state of matter – supersolidity. The team made the discovery by cooling solid helium to an extremely low temperature and oscillating the material at different speeds. They found that the particles behaved in a way not seen before, which suggested it might show the “perpetual flow” seen in superfluids like liquid helium.

Day and Dr. Beamish have taken this research a different direction. In an experiment not done before, they cooled the solid helium and manipulated the material another way – by shearing it elastically. In doing so, they found that the solid behaved in an entirely new and unexpected way – it became much stiffer at the lowest temperatures.

“The experimental results from the University of Alberta are remarkable,” Dr. Chan said. “Namely, Professor Beamish and his student James Day found that the shear modulus of solid helium increases by 20% when it is cooled below 0.25K.

“Furthermore, the temperature dependence of the shear modulus seems to track the period change seen in torsional oscillator. It seems the two phenomena are related and probably have the same mechanical origin.

“This is an important breakthrough since the original discovery,” Chan said.

Other physicists around the world are also studying the implications. Through this discovery, Beamish and Day have significantly added to the body of knowledge about the fundamental states of matter allowed by nature.

Source: University of Alberta

Explore further: Supersolid helium unlikely

Related Stories

Supersolid helium unlikely

May 17, 2011

( -- Does helium-4 become a "supersolid" near absolute zero? What previous researchers thought might be a supersolid transition is better explained by changes in the solid's resistance to shearing, according to ...

A crack in the case for supersolids

June 21, 2010

New experiments are casting doubt on previously reported observations of supersolid helium. In a paper appearing in the current issue of Physical Review Letters, John Reppy (Cornell University) presents research suggesting ...

Claim of supersolid helium disproved by original researcher

October 15, 2012

(—Moses Chan, co-author of a paper published in 2004 describing work that resulted in claims of the discovery of supersolid helium, has now co-authored another paper, published in Physical Review Letters, describing ...

Recommended for you

Making silicon-germanium core fibers a reality

October 25, 2016

Glass fibres do everything from connecting us to the internet to enabling keyhole surgery by delivering light through medical devices such as endoscopes. But as versatile as today's fiber optics are, scientists around the ...

Controlling ultrasound with 3-D printed devices

October 25, 2016

Ultrasound is more than sound. Obstetricians use it to peer inside a woman's uterus and observe a growing baby. Surgeons use powerful beams of ultrasound to destroy cancer cells. Researchers fire ultrasound into materials ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.