Magnetic field points the way for metallic nanorods with hydrogen peroxide propulsion

January 7, 2005

Remote Control Nanomotor

Like their normally sized analogues, nanoscale machines and robots need motors to function. Some time ago, a team at Pennsylvania State University developed a clever engine to "drive" nanoscopic metal rods; however, until now, these tiny "submarines" roamed at random through the solution. Now the research team headed by Ayusman Sen has made more progress: their "sequel" can be steered by remote control.

How do these steerable nanoscopic submarines work? First, it is important that the nanorods be made of "stripes" of different metals: one end of gold, followed by a very narrow band of nickel, a band of gold, another very narrow band of nickel, and the other end of platinum. The platinum end is responsible for the propulsion because it is here that the "fuel" is converted. The fuel in question is hydrogen peroxide that is present in the solution. It is catalytically converted by the platinum, producing oxygen, which also dissolves in the solution.

Having a high oxygen concentration, the solution surrounding the platinum end is less polar than the solution surrounding the other end of the nanorod. The surface tension between the solution and the metal surface is thus no longer equal at both ends of the rods and the rod is pulled inescapably in the direction of the oxygen-containing region of the solution. Because oxygen is constantly being formed, the gradient is maintained and the rod moves through the solution with its platinum end in front. The orientation of the nanorods in the solution is random; the overall motion is thus undirected.

This is where the "remote control"-an external magnetic field-comes in. The "receiving antennas" are the previously magnetized nickel bands in the nanorods. The crucial trick here is that the width of the bands must be smaller than their diameter, so that the nanorods can be magnetized crosswise, rather than along their long axis. When the magnetic field is switched on, the nanorods line up at right angles to its field lines and maintain this orientation as they zip around under hydrogen peroxide power. By changing the direction of the magnetic field, the researchers can vary the orientation of the nanorods-and thus the direction of their movement-at will. The nanorods are steerable.

"In principle, we should also be able to couple our nanorod motors to other nano-objects in order to drive them," says Sen. "This opens up new possibilities for a whole new class of micro- and nanomachines." The dimensions and magnetic properties of the nanorods are comparable to magnetotactic bacteria, which are oriented and steered by the magnetic field of the earth. Sen: "Thus, our nanorods are functional models for such organisms."

Source: Pennsylvania State University

Explore further: Gold-diamond nanodevice for hyperlocalised cancer therapy

Related Stories

Gold-diamond nanodevice for hyperlocalised cancer therapy

July 31, 2015

Precise targeting biological molecules, such as cancer cells, for treatment is a challenge, due to their sheer size. Now ,Taiwanese scientists have proposed an advanced solution, based on a novel combination of previously ...

Nanoscale worms provide new route to nano-necklace structures

March 27, 2015

Researchers have developed a novel technique for crafting nanometer-scale necklaces based on tiny star-like structures threaded onto a polymeric backbone. The technique could provide a new way to produce hybrid organic-inorganic ...

Traces of DNA exposed by twisted light

October 28, 2013

Structures that put a spin on light reveal tiny amounts of DNA with 50 times better sensitivity than the best current methods, a collaboration between the University of Michigan and Jiangnan University in China has shown.

Recommended for you

A long look back at fishes' extendable jaws

October 8, 2015

When it comes to catching elusive prey, many fishes rely on a special trick: protruding jaws that quickly extend their reach to snap up that next meal. Now, researchers reporting in the Cell Press journal Current Biology ...

New protein cleanup factors found to control bacterial growth

October 8, 2015

Biochemists have long known that crucial cell processes depend on a highly regulated cleanup system known as proteolysis, where specialized proteins called proteases degrade damaged or no-longer-needed proteins. These proteases ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.